Abstract:
PROBLEM TO BE SOLVED: To provide an integrated process at a low cost, with forms a logic circuit including an embedded DRAM array while still preserving the advantages of the logic circuit and a DRAM circuit to the maximum extent possible. SOLUTION: The logic circuit including an embedded DRAM achieves process integration by simultaneously forming a strap connecting a memory cell capacitor with a pass transistor, and a buried dielectric layer isolating logic transistor sources and drains from a substrate. COPYRIGHT: (C)2003,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a memory cell etc. containing semiconductor features and a phase-change material. SOLUTION: The semiconductor feature defines a groove for dividing the semiconductor feature itself into a first electrode and a second electrode. The phase-change material at least partially fills the groove, and serves to electrically connect the first electrode with the second electrode. In response to a switching signal, added to at least one of the first and second electrodes, at least a part of phase-change material operates so that a low electrical resistance state and a high electrical resistance state are switched. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To reduce the size of an NVRAM cell by allowing a cell selection circuit for selecting a cell in an array to respond to a plurality of logic gates and the logic gates to receive data being selected from the array. SOLUTION: A word line 180 is capacitively coupled to floating gates 180f and 228, and at the same time a word line 182 is capacitively coupled to floating gates 182f and 230. Then, four cells indicated by the floating gates 182f and floating gate parts 180f, 228, and 230 are allowed to share each of bit line diffusion regions 224 and 234, and a plurality of logic gates in a selection circuit for selecting the cells receive the data of a selected cell, thus reducing the size of an NVRAM cell for including in a single integrated circuit chip.
Abstract:
PROBLEM TO BE SOLVED: To provide an operating procedure for offering a cost effective method to maximize the number of levels with respect to a characteristic parameter of a memory cell. SOLUTION: This procedure utilizes statistical analysis to determine a most likely binary value associated with the characteristic parameter value. In one embodiment, a receiving unit reads the values of the characteristic parameters for each memory cell in the memory cell collection including a target memory cell. A generating unit generates a probability distribution function of the characteristic parameter for each of the possible binary values for the memory cell collection. The generating unit uses the probability distribution function to determine the possible value range for the shifted value of the characteristic parameter of the target memory cell. The value of the characteristic parameter for the target memory cell is converted to a binary value for which the probability is highest. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a heat-shielded low power PCM-based reprogrammable eFUSE device. SOLUTION: An electrically re-programmable fuse (eFUSE) device for integrated circuit devices includes an elongated heater element, an electrically insulating liner surrounding an outer surface of the elongated heater element along a longitudinal axis thereof, leaving both ends of the elongated heater element in electrical contact with first and second heater electrodes. A phase change material (PCM) surrounds a portion of an outer surface of the electrically insulating liner, a thermally and electrically insulating layer surrounds an outer surface of the PCM, with first and second fuse electrodes in electrical contact with both ends of the PCM. The PCM is encapsulated within the electrically insulating liner, the thermally and electrically insulating layer, and the first and second fuse electrodes. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a memory structure in which electric characteristics are controlled by indirectly heating a phase change material. SOLUTION: A manufacturing method of a memory device of a phase change material and a phase change memory device prepared by the method thereof are included. Concretely, the phase change memory device contains a semiconductor structure, and the semiconductor structure includes a substrate where a first doped area is contained and a set of second doped areas are disposed at both ends thereof; the phase change material disposed on the first doped area; and a conductor disposed on the phase change material. The semiconductor structure is operated as a bipolar junction transistor when the phase change material is in a first phase, and the semiconductor structure is operated as a MOSFET when the phase change material is in a second phase. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide an antifuse structure and method for personalizing a semiconductor device which can overcome the limitations of the prior art. SOLUTION: An antifuse 100 of the preferred embodiment comprises a two layer transformble insulator core between two electrodes 102, 104. The transformable insulator core is normally non-conductive but can be transformed into a conductive material by supplying a sufficient voltage across the electrodes 102, 104. The two layer core preferably comprises an injector layer 106 and a dielectric layer 108. The injector layer 106 preferably comprises a two phase material such as silicon rich nitride or silicon rich oxide. Initially, the injector layer 106 and the dielectric layer 108 are non-conductive. When a sufficient voltage is applied, the core fuses together and becomes conductive.
Abstract:
Eine beispielhafte Ausführungsform ist eine Schaltung zum Ermitteln eines Binärwertes einer Speicherzelle. Die Schaltung weist Parallelkondensatoren mit unterschiedlichen Kapazitäten auf, um selektiv eine Verbindung mit der Speicherzelle herzustellen, und eine Steuereinheit, die so konfiguriert ist, dass die Parallelkondensatoren iterativ auf eine erste Spannung aufgeladen werden, bis ein ausgewählter Parallelkondensator bewirkt, dass die erste Spannung innerhalb eines vordefinierten Zeitbereiches über die Speicherzelle auf eine erste Vergleichsspannung abnimmt, auf der Grundlage des ausgewählten Parallelkondensators ein Binärwert der höchstwertigen Bits der Speicherzelle ermittelt wird, nach dem Ermitteln des Binärwertes der höchstwertigen Bits der Speicherzelle der ausgewählte Parallelkondensator auf eine zweite Spannung aufgeladen wird, und auf der Grundlage einer Abnahme der zweiten Spannung am ausgewählten Parallelkondensator über die Speicherzelle ein Binärwert der niedrigstwertigen Bits der Speicherzelle ermittelt wird.
Abstract:
Ein Verfahren zur Herstellung einer Phasenwechsel-Porenspeicherzelle, welches das Bilden einer unteren Elektrode, das Bilden einer ersten dielektrischen Schicht auf der unteren Elektrode, das Bilden einer Opferschicht auf der ersten dielektrischen Schicht, das Bilden einer Isolationsschicht auf der Opferschicht und das Bilden einer zweiten dielektrischen Schicht auf der Isolationsschicht umfasst. Das Verfahren umfasst ferner das Bilden einer Durchkontaktierung, welche die untere Elektrode überlagert, wobei sich die Durchkontaktierung bis zu der Opferschicht erstreckt, das Ätzen durch die Opferschicht bis zu der ersten dielektrischen Schicht, um eine Pore zu bilden, die so definiert ist, dass sie sich durch die Opferschicht und die erste dielektrische Schicht hindurch erstreckt, das Aufbringen eines Phasenwechselmaterials auf der Opferschicht und in der Pore und das Entfernen des außerhalb der Pore gebildeten Phasenwechselmaterials, das Entfernen der Opferschicht, um die Pore frei zu legen, wobei die Pore vertikal ausgerichtet ist, und das Bilden einer oberen Elektrode über der Pore.
Abstract:
A method for fabricating a phase change memory pore cell that includes forming a bottom electrode, forming a dielectric layer on the bottom electrode, and forming a sacrificial layer on the dielectric layer. The method further includes selectively etching portions of the sacrificial layer and the dielectric layer to define a pore extending through the sacrificial layer and the dielectric layer, depositing phase change material on the sacrificial layer and into the pore and removing the phase change material formed outside the pore, removing the sacrificial layer to expose the pore, the pore being vertically aligned, and forming a top electrode over the pore.