Abstract:
An interconnect structure for an integrated circuit (IC) device includes an elongated, electrically conductive line comprising one or more segments formed at a first width, w1, and one or more segments formed at one or more additional widths, w2 . . . wN, with the first width being narrower than each of the one or more additional widths; wherein the relationship of the total length, L1, of the one or more conductive segments formed at the first width to the total lengths, L2 . . . LN, of the one or more conductive segments formed at the one or more additional widths is selected such that, for a given magnitude of current carried by the conductive line, a critical length with respect to an electromigration short-length effect benefit is maintained such that a total length of the conductive line, L=L1+L2+ . . . +LN, meets a minimum desired design length regardless of the critical length.
Abstract:
A method and structure for a composite stud contact interface with a decreased contact resistance and improved reliability. A selective dry etch is used which comprises a fluorine containing gas. The contact resistance is reduced by partially dry-etching back the tungsten contact after or during the M1 RIE process. The recessed contact is then subsequently metalized during the M1 liner/plating process. The tungsten contact height is reduced after it has been fully formed.
Abstract:
Methods of forming different back-end-of-line (BEOL) wiring for different circuits on the same semiconductor product, i.e., wafer or chip, are disclosed. In one embodiment, the method includes simultaneously generating BEOL wiring over a first circuit using a dual damascene structure in a first dielectric layer, and BEOL wiring over a second circuit using a single damascene via structure in the first dielectric layer. Then, simultaneously generating BEOL wiring over the first circuit using a dual damascene structure in a second dielectric layer, and BEOL wiring over the second circuit using a single damascene line wire structure in the second dielectric layer. The single damascene via structure has a width approximately twice that of a via portion of the dual damascene structures and the single damascene line wire structure has a width approximately twice that of a line wire portion of the dual damascene structures. A semiconductor product having different width BEOL wiring for different circuits is also disclosed.
Abstract:
FinFETS and methods for making FinFETs with a recessed stress liner. A method includes providing an SOI substrate with fins, forming a gate over the fins, forming an off-set spacer on the gate, epitaxially growing a film to merge the fins, depositing a dummy spacer around the gate, and recessing the merged epi film. Silicide is then formed on the recessed merged epi film followed by deposition of a stress liner film over the FinFET. By using a recessed merged epi process, a MOSFET with a vertical silicide (i.e. perpendicular to the substrate) can be formed. The perpendicular silicide improves spreading resistance.
Abstract:
FinFETS and methods for making FinFETs with a recessed stress liner. A method includes providing an SOI substrate with fins, forming a gate over the fins, forming an off-set spacer on the gate, epitaxially growing a film to merge the fins, depositing a dummy spacer around the gate, and recessing the merged epi film. Silicide is then formed on the recessed merged epi film followed by deposition of a stress liner film over the FinFET. By using a recessed merged epi process, a MOSFET with a vertical silicide (i.e. perpendicular to the substrate) can be formed. The perpendicular silicide improves spreading resistance.