Abstract:
PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon carrier, having a conductive through-via for achieving the high yield manufacturing of a silicon carrier with low defect density. SOLUTION: This silicon carrier 43 is formed with via diameters, ranging from one micron to 10 microns, with respect to vertical thickness ranging from 10 microns or smallers to 300 microns or larger. Thus, it is possible to manufacture a silicon carrier which is resistant to a thermal mechanical stresses, when manufacturing, and significant minimization of its thermal mechanical movement on a via side wall interface among silicon materials, insulator materials, linear materials and conductive materials is effected. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
A FinFET structure is formed by forming a hardmask layer on a substrate including a silicon-containing layer on an insulating layer. The hardmask layer includes first, second and third layers on the silicon-containing layer. An array of fins is formed from the hardmask layer and the silicon-containing layer. A gate is formed covering a portion but not all of a length of each of the array of fins. The portion covers each of the fins in the array. The gate defines source/drain regions on either side of the gate. A spacer is formed on each side of the gate, the forming of the spacer performed to remove the third layer from portions of the fins in the source/drain regions. The second layer of the hardmask layer is removed from the portions of the fins in the source/drain regions, and the fins in the source/drain regions are merged.
Abstract:
A method is provided for fabricating a finFET device. Fin structures are formed over a BOX layer. The fin structures include a semiconductor layer and extend in a first direction. A gate stack is formed on the BOX layer over the fin structures and extending in a second direction. The gate stack includes a high-K dielectric layer and a metal gate. Gate spacers are formed on sidewalls of the gate stack, and an epi layer is deposited to merge the fin structures. Ions are implanted to form source and drain regions, and dummy spacers are formed on sidewalls of the gate spacers. The dummy spacers are used as a mask to recess or completely remove an exposed portion of the epi layer. Silicidation forms silicide regions that abut the source and drain regions and each include a vertical portion located on the vertical sidewall of the source or drain region.
Abstract:
PROBLEM TO BE SOLVED: To provide a reliable process for achieving selectivity for selectively etching spacer/side wall material on fin against spacer/side wall material on a gate stack of finFET structure in an integrated circuit. SOLUTION: A spacer material is deposited in conformal manner on both fin and gate stack. Inclined impurity injection is performed almost parallel to the gate stack so that only the spacer material deposited on the fin is selectively damaged. Thus, such finFET is provided as covers a part of fin of the semiconductor material formed on a substrate and contains a spacer having substantially uniform profile along the length of the gate stack. By a damage caused by inclined injection, the spacer material on the fin can be so etched as has a higher selectivity than the spacer material on the gate stack. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide the electrochemical processing of thin films directly on semiconducting or insulating layers and an apparatus for implementing such processes. SOLUTION: An electrochemical process comprising steps of: providing a 125 mm or larger semiconductor wafer in electrical contact with a conducting surface, wherein at least a portion of the semiconductor wafer is in contact with an electrolytic solution, the semiconductor wafer functioning as a first electrode; providing a second electrode in the electrolytic solution, the first and second electrode connected to opposite ends of an electric power source; and irradiating a surface of the semiconductor wafer with a light source as an electric current is applied across the first and the second electrodes. The invention is also directed to an apparatus including a light source and electrochemical components to conduct the electrochemical process. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
Ausführungsformen betreffen das Bilden einer Struktur, welche mindestens eine Finne, ein Gate und einen Abstandhalter aufweist, das Anwenden eines Temperverfahrens auf die Struktur, um zwischen der mindestens einen Finne und dem Abstandhalter eine Lücke zu erzeugen, und das Anwachsen einer epitaxialen Halbleiterschicht in der Lücke zwischen dem Abstandhalter und der mindestens einen Finne.
Abstract:
Verfahren zur Herstellung eines MOSFET, aufweisend: Bereitstellen eines Substrats mit einer Vielzahl von Rippen; Bilden eines Gate-Stapels über dem Substrat, wobei der Gate-Stapel mindestens eine Seitenwand hat; Bilden eines Versatz-Abstandshalters benachbart zu der Seitenwand des Gate-Stapels; Züchten einer epitaktischen Dünnschicht, welche die Rippen verbindet, um eine epi-merge Schicht zu bilden; Bilden eines Dummy-Abstandshalters benachbart zu mindestens einem Teil des Versatz-Abstandshalters; Entfernen eines Teils der epi-merge Schicht, um eine epi-merge Seitenwand und ein epi-merge Abstandshalter-Gebiet zu bilden, wobei die epi-merge Seitenwand dadurch gebildet wird, dass der unter dem Dummy-Abstandshalter liegende Teil der epi-merge Schicht vor dem Entfernen der epi-merge Schicht durch Ätzen geschützt ist und wobei das epi-merge Abstandshalter-Gebiet der Teil der epi-merge Schicht ist, der nicht geätzt wurde, da er durch den Dummy-Abstandshalter geschützt ist; Bilden eines Silicids mit der epi-merge Seitenwand, um ein Seitenwand-Silicid zu bilden; und Abscheiden einer Verspannungsschicht über dem Substrat.
Abstract:
Ein Verfahren zum Bilden einer FinFET-Struktur (200) mit einem Metall-Isolator-Metall-Kondensator. Auf einem Halbleitersubstrat (202, 204) werden Fins (206) aus Silicium gebildet, gefolgt von der Bildung des Metall-Isolator-Metall-Kondensators auf den Fins (206) aus Silicium mittels Abscheiden von aufeinanderfolgenden Schichten aus einer ersten Schicht (208) aus Titannitrid, einer dielektrischen Schicht (210) sowie einer zweiten Schicht (212) aus Titannitrid. Über den Schichten (208, 210, 212) des Metall-Isolator-Metall-Kondensators wird eine Schicht (214) aus Polysilicium abgeschieden, gefolgt von einem Zurückätzen der Schicht (214) aus Polysilicium und der Schichten (208, 210, 212) des Metall-Isolator-Metall-Kondensators von Enden der Fins (206) aus Silicium aus derart, dass die ersten und die zweiten Enden der Fins (206) aus Silicium aus der Schicht (214) aus Polysilicium hervorragen.