Abstract:
Methods and devices that monolithically integrate thin film elements/devices, e.g., environmental sensors, batteries and biosensors, with high performance integrated circuits, i.e., integrated circuits formed in a high quality device layer. Preferred embodiments further monolithically integrate a solar cell array. Preferred embodiments provide pin-size and integrated solar powered wearable electronic, ionic, molecular, radiation, etc. sensors and circuits.
Abstract:
A three dimensional cluster of MEMS components is formed by a stack of substrates supported by an adjacent substrate and separated therefrom. The MEMS components of the cluster may be microsensors for sensing electrical signals within biologic tissue.
Abstract:
La présente invention concerne un procédé de fabrication de microcanaux sur un support, et un support comprenant ces microcanaux, trouvant notamment son application à la fabrication de supports microstructurés pour des systèmes microéiectroniques, microfluidiques, et/ou micromécaniques. Le procédé comprend une étape (a) de réalisation d'au moins un ou d'au moins deux motifs 2 à ia surface d'une couche inférieure 1, et une étape (b) de dépôt, par-dessus la couche inférieure et le motif ou les motifs, d'une couche 3 en matériau polymère obtenue par polymérisation, dans un réacteur de dépôt chimique en phase vapeur assisté, éventuellement à distance, par plasma (PECVD, éventuellement RPECVD), d'un monomère organique ou organométallique comprenant des fonctions siloxanes, par exemple du tétraméthyldisiloxane. La couche en matériau polymère est déposée en sorte de créer, à la place du motif et après révélation par décomposition de ce motif, ou entre les deux motifs sans révélation-décomposition, un canal 4a, 4b, 4c, 4d fermé sur au moins une partie de sa longueur.
Abstract:
The design and deposition of a sensing layer for room temperature SAW/BAW chemical sensors utilizing macrocyclic compounds in accordance with supra-molecular chemistry principles. The gas to be sensed is attached to the organic sensing film thus changing its visco-elastic properties and creating a mass increase of the film deposited on the surface of SAW/BAW devices. A direct printing method can be used as an additive, mask-less procedure to deposit metallic interdigital transducers and electrodes required for SAW/BAW devices, along with the deposition of a guiding layer and the organic films only on the location required by the sensing SAW/BAW principle of the sensor. Different thermal treatment solutions can be used for the consolidation of the gelly organic films deposited by the direct printing methods.
Abstract:
A biosensor is comprised of a free and a biofunctionalized recognition self- sensing nanocantilever, a dock adjacent to the ends of the nanocantilevers, and a gap between the nanocantilevers and dock. The self-sensing cantilevers each include a semiconductor piezoresistor defined in a pair of legs about which the cantilevers flex. A bias power or current is applied to the piezoresistor. The sensitivity of the cantilevers is optimized for a given ambient temperature and geometry of the cantilevers and dock by minimizing the force spectral density, S F , of the cantilevers to determine the optimum bias power, P in . A sub-aN/VHz force sensitivity is obtained by scaling down the dimensions of the cantilevers and supplying an optimum bias power as a function of temperature and geometry.
Abstract:
A method of fabricating a sensor comprising a nanowire on a support substrate with a first semiconductor layer arranged on the support substrate is disclosed. The method comprises forming a fin structure from the first semiconductor layer, the fin structure comprising at least two supporting portions and a fin portion arranged there between; oxidizing at least the fin portion of the fin structure thereby forming the nanowire being surrounded by a first layer of oxide; and forming an insulating layer above the supporting portions; wherein the supporting portions and the first insulating layer form a microfluidic channel. A nanowire sensor is also disclosed. The nanowire sensor comprises a support substrate, a semiconducting fin structure arranged on the support substrate, the fin structure comprising at least two semiconducting supporting portions and a nanowire arranged there between; and a first insulating layer on a contact surface of the supporting portions; wherein the supporting portions and the first insulating layer form a microfluidic channel.
Abstract:
The present invention relates to a sensor comprising one or more cantilevers for use in the detection of the presence of a target molecule in a fluid sample, change of temperature or other things that cause a change of stress in the surface of the cantilever. The sensor comprises a cantilever with an integrated piezoresistive element having a pair of wires for applying an electrical field. The piezoresistive element is of p-type silicon and is arranged to have a protruding direction which is orientated along the direction of the silicon. The cantilever is clamped along a clamping line L to the wall of the sensor, so that one or more piezoresistive element clamping line line sections are formed, with a piezoresistive element claming line (L) between the two outermost points including clamping of the piezoresistive element, which piezoresistive element clamping line is at least as long as the shortest distance (H) between the point of the piezoresistive element protruding furthest from the wall. The sensor comprising one or more cantilevers can be produced from standard silicon wafers by etching .
Abstract:
The invention relates to an electromechanical microstructure (1) consisting of a first mechanical part (102) which is made from a first conductive material and which comprises (i) an elastically-deformable area (104) having a given thickness value and an exposed surface (2) and (ii) a first organic film (4) having a given thickness, which is disposed over the entire exposed surface (2) of the aforementioned deformable area (104). The invention is characterised in that (a) the thickness of the first film (4) is such that the elastic response of the deformable area (104) comprising the first film (4) does not change by more than 5 % in relation to the response of the bare deformable area (104) or (b) in that the thickness of the first film (4) is ten times smaller than the thickness of the deformable area (104). The invention is suitable for the production of electromechanical microstructures.
Abstract:
Microstructure électromécanique (1) comprenant une première partie appelée partie mécanique (102) réalisée dans un premier matériau conducteur de l'électricité, et qui comprend d'une part une zone déformable de manière élastique (104) ayant une valeur d'épaisseur et une surface exposée (2), et d'autre part un premier film organique (4) ayant une épaisseur, présent sur l'ensemble de la surface exposée (2) de la dite zone déformable (104), caractérisé en ce que l'épaisseur du premier film (4) est telle que la réponse élastique de la zone déformable (104) munie du premier film (4) ne change pas de plus de 5 % par rapport à la réponse de la zone déformable nue (104) ou en ce que l'épaisseur du premier film (4) est inférieure à dix fois l'épaisseur de la zone déformable (104). Application à la fabrication de microstructures électromécaniques.
Abstract:
Techniques for patterning chemically or biochemically active agents on a substrate surface involve providing a micromold having a contoured surface including indentations defining a pattern and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure on the surface. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be employed to form patterned polymeric articles, inorganic salts and ceramics, etc. at the surface. The articles, according to one aspect, are formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter. Smaller dimensions can be achieved. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface. The invention provides for inexpensive and simple synthesis of a combinatorial chemical or biochemical library.