Abstract:
A system and method for providing a MEMS device with integrated electronics are disclosed. The MEMS device comprises an integrated circuit substrate and a MEMS subassembly coupled to the integrated circuit substrate. The integrated circuit substrate includes at least one circuit coupled to at least one fixed electrode. The MEMS subassembly includes at least one standoff formed by a lithographic process, a flexible plate with a top surface and a bottom surface, and a MEMS electrode coupled to the flexible plate and electrically coupled to the at least one standoff. A force acting on the flexible plate causes a change in a gap between the MEMS electrode and the at least one fixed electrode.
Abstract:
A method of making a system-in-package device, and a system-in-package device is disclosed. In the method, at least one first species die with predetermined dimensions, at least one second species die with predetermined dimensions, and at least one further component of the system-in-device is included in the system-in package device. At least one of the first and second species dies is selected for redimensioning, and material is added to at least one side of the selected die such that the added material and the selected die form a redimensioned die structure. A connecting layer is formed on the redimensioned die structure. The redimensioned die structure is dimensioned to allow mounting of the non-selected die and the at least one further component into contact with the redimensioned die structure via the connecting layer.
Abstract:
Die Erfindung beschreibt ein mikromechanisches Bauelement mit wenigstens zwei Kavernen, wobei die Kavernen von einem mikromechanischen Bauteil und einer Kappe begrenzt sind, wobei die Kavernen unterschiedliche atmosphärische Innendrücke aufweisen. Die Erfindung beschreibt weiterhin ein Verfahren zur Herstellung eines mikromechanischen Bauelements mit wenigstens zwei Kavernen, wobei die Kavernen von einem mikromechanischen Bauteil und einer Kappe begrenzt sind. Dabei werden das mikromechanische Bauteil und die Kappe bei einem ersten vorgebbaren atmosphärischen Druck hermetisch miteinander verbunden. Danach wird ein Zugang zu wenigstens einer Kaverne erzeugt, und anschliessend wird der Zugang bei einem zweiten vorgebbaren atmosphärischen Druck hermetisch verschlossen.
Abstract:
An inertia force sensor comprising a mass body (11) displaced when a force is applied to the mass body (11), at least one holding beam (12) holding the mass body (11), and a fixing section (13) fixing one end of the holding beam (12) so as to sensing the inertia force acting on the mass body (11) based on the displacement of the mass body (11), characterized in that the mass body (11) has a hollow structure made by removing the inside of a silicon substrate (1) by one process of etching, and the fixing section (13) is at least a part of the main body of the silicon substrate (1). Since the inertia force sensor is made of single crystal silicon, the mechanical characteristics and reliability are greatly imporoved.
Abstract:
In some embodiments a method of manufacturing a sensor system can comprise forming a first structure having a substrate layer (28) and a first sensor (30,32,34) that is positioned on a first side of the substrate layer, bonding a cap structure (24) over the first sensor on the first side of the substrate layer, and depositing a first dielectric layer (131) over the cap structure. After bonding the cap structure and depositing the first dielectric layer, a second sensor (124,126,128) is fabricated on the first dielectric layer. The second sensor includes material that would be adversely affected at a temperature that is used to bond the cap structure to the first side of the substrate layer.
Abstract:
Systems and methods for a micro-electromechanical system (MEMS) device are provided. In one embodiment, a system comprises a first outer layer and a first device layer comprising a first set of MEMS devices, wherein the first device layer is bonded to the first outer layer. The system also comprises a second outer layer and a second device layer comprising a second set of MEMS devices, wherein the second device layer is bonded to the second outer layer. Further, the system comprises a central layer having a first side and a second side opposite that of the first side, wherein the first side is bonded to the first device layer and the second side is bonded to the second device layer.
Abstract:
A MEMS sensor comprises a substrate and at least one proof mass having a first plurality of combs. The proof mass is coupled to the substrate via one or more suspension beams such that the proof mass and the first plurality of combs are movable. The MEMS sensor also comprises at least one anchor having a second plurality of combs. The anchor is coupled to the substrate such that the anchor and second plurality of combs are fixed in position relative to the substrate. The first plurality of combs are interleaved with the second plurality of combs. Each of the combs comprises a plurality of conductive layers electrically isolated from each other by one or more non-conductive layers. Each conductive layer is individually coupled to a respective electric potential such that capacitance between the combs varies approximately linearly with displacement of the movable combs in an out-of-plane direction.