Abstract:
There is disclosed a method of manufacturing a micromechanical device. The method comprises the steps of: (a) etching a substrate (1), having a mask (2) thereon, through an opening in the mask to a desired depth to form a trench (6) having a side wall (4) and a base (5) in the substrate (1); (b) depositing a layer of a protecting substance (7) on the exposed surfaces of the substrate and mask; (c) selectively removing the protecting substance (7) from the base (5); and (d) etching the base (5) using a fluorine-containing etchant. Also disclosed is a micromechanical device formed by the method and an apparatus for manufacturing the micromechanical device.
Abstract:
The invention concerns a method for the anisotropic etching of features defined by an etching mask, preferably recesses with precisely defined sides in silicon, produced using a plasma etching technique. The invention calls for the etched features to have an extremely high degree of anisotropy while ensuring high mask selectivity. This is achieved by carrying out the anisotropic etching procedure in separate polymerization and etching steps which alternate with each other.
Abstract:
The invention relates to a method of fabricating a micro machined channel, comprising the steps of providing a substrate of a first material and having a buried layer of a different material therein, and forming at least two trenches in said substrate by removing at least part of said substrate. Said trenches are provided at a distance from each other and at least partly extend substantially parallel to each other, as well as towards said buried layer. The method comprises the step of forming at least two filled trenches by providing a second material different from said first material and filling said at least two trenches with at least said second material; forming an elongated cavity in between said filled trenches by removing at least part of said substrate extending between said filled trenches; and forming an enclosed channel by providing a layer of material in said cavity and enclosing said cavity.
Abstract:
The invention relates to a method for producing a micromechanical component, the component produced using said method, and a use of the micromechanical component during the production of a micromechanical sensor component. In order to produce the micromechanical component, a first structured layer is first produced on the front side of a semiconductor wafer, and the semiconductor wafer is etched from the front side using a first trench etching step in accordance with said first structured layer. A second structured layer is then applied to the rear side of the semiconductor wafer, and the semiconductor wafer is etched from the rear side using a second trench etching step in accordance with the second structured layer. The invention is characterized in that a through-hole from the front side to the rear side is produced in the semiconductor wafer using the first and the second trench etching step.
Abstract:
Embodiments of the invention relate to a substrate etching method and apparatus. In one embodiment, a method for etching a substrate in a plasma etch reactor is provided that includes a) depositing a polymer on a substrate in an etch reactor, b) etching the substrate using a gas mixture including a fluorine-containing gas and oxygen in the etch reactor, c) etching a silicon-containing layer the substrate using a fluorine-containing gas without mixing oxygen in the etch reactor, and d) repeating a), b) and c) until an endpoint of a feature etched into the silicon-containing layer is reached.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
The invention relates to fluid paths in etchable materials. Fluid paths are formed by forming a cavity through a substrate material with a first dry removal process to produce a first surface of the cavity. The first surface of the cavity is associated with a first roughness. The first surface of the cavity is etched with a second wet removal process to reduce the first roughness and produce a second roughness associated with the first surface of the cavity. A coating is applied to the first surface of the cavity to produce a second surface to improve wettability of the first or second surface of the cavity, reduce in size or number gas nucleation sites in the first or second surface of the cavity, reduce the amount of debris associated with the first roughness carried by the fluid flow, and/or improve hydrophilicity of the first or second surface.
Abstract:
The invention provides a single mask, low temperature reactive ion etching process for fabricating high aspect ratio, released single crystal microelectromechanical structures independent of crystal orientation. A dielectric mask (12) on a single-crystal substrate (154) is patterned to define isolating trenches. A protective conformal layer (28) is applied to the resultant structure. The conformal layer (28) on the floor of the trenches is removed and a second etch deepens the trench to expose the mesa walls which are removed during the release step by isotropic etching. A metal layer (44) is formed on the resultant structure providing opposed plates (156) and (158) of a capacitor. The cantilever beam (52) with the supporting end wall (152) extends the grid-like structure (150) into the protection of the deepened isolation trenches (54). A membrane can be added to the released structures to increase their weight for use in accelerometers, and polished for use as movable mirrors.
Abstract:
A method for manufacturing a mirror device, the method includes a first step of preparing a wafer having a support layer, a device layer, and an intermediate layer; a second step of forming a slit in the wafer such that the movable portion becomes movable with respect to the base portion by removing a part of each of the support layer, the device layer, and the intermediate layer from the wafer and forming a plurality of parts each corresponding to the structure in the wafer, after the first step; a third step of performing wet cleaning using a cleaning liquid after the second step; and a fourth step of cutting out each of the plurality of parts from the wafer after the third step. In the second step, a part of the intermediate layer is removed from the wafer by anisotropic etching.