Abstract:
A conductor carrier includes a base insulating film, a contact insulating film, at least one first printed conductor and one second printed conductor. The contact insulating film includes at least one first recess and one second recess. The printed conductors are embedded between the two insulating films and each forms a first overlapping region with the first or second recess of the contact insulating film. The conductor carrier also includes an insulating region which separates the first printed conductor from the second printed conductor in an insulating manner due to the contact insulating film being less raised than outside the insulating region, and extends between the first and second recesses of the contact insulating film in a meandering manner. A configuration having the conductor carrier is also provided.
Abstract:
The present invention is to provide a printed wiring board which can certainly prevent damage of conductive pattern caused by the terminal. The printed wiring board has a board, a conductive pattern, a through-hole and a non-conductive area. A lead wire of resistance mounted on the printed wiring board is inserted into the through-hole 4. The lead wire projects from a surface of the board, and is bent close to the surface. The non-conductive area is formed into a fan-shaped shape enlarging toward a tip of the lead wire from a center of the through-hole. Since the bent lead wire is arranged on the non-conductive area, the non-conductive area can prevent damage of the conductive pattern which is caused by touching the lead wire to the conductive pattern.
Abstract:
A test carrier for a semiconductor component includes a base for retaining the component, and an interconnect on the base having contacts configured to electrically engage component contacts on the component. The base includes conductors in electrical communication with the contacts on the interconnect, which are defined by grooves in a conductive layer. In addition, the conductors include first portions of the conductive layer configured for electrical transmission, which are separated from one another by second portions of the conductive layer configured for no electrical transmission. The test carrier is configured for mounting to a burn in board in electrical communication with a test circuitry configured to apply test signals through the contacts on the interconnect to the component.
Abstract:
A disclosed balanced transmission cable connector includes a relay board having a wiring pattern extending from the upper face to the lower face through a via hole. Wire connection pads to output signals are disposed on the upper face of the relay board, and wire connection pads to input signals are disposed on the lower face of the relay board. Two wires of a pair wire are soldered to the wire connection pads disposed on the same face of the relay board. A ground layer inside the relay board shields between the soldered parts of the pair wire to transmit output signals and the soldered parts of the pair wire to transmit input signals.
Abstract:
A method of processing a substrate is provided. The method includes providing a substrate having a first surface, a second surface, and conductive paths extending from the first surface to the second surface. The method also includes (1) covering a portion of the first surface with a conductive material, and (2) removing a portion of the conductive material to define conductive traces on the first surface.
Abstract:
One or more through holes are formed by a process in a printed circuit board substrate formed of a resinous dielectric sheet and a conductive layer covering one surface of the dielectric sheet. The process involves the forming by laser one or more cavities on other surface of the dielectric sheet such that the cavities penetrate only the dielectric sheet, without penetrating the conductive layer. Both surfaces of the dielectric sheet are coated with a liquid photoresist layer such that the cavities are filled with the photoresist. A plurality of small areas are formed by photolithography on the surface which is covered with the conductive layer. The small areas are corresponding in location and shape to the cavities which may be of any shape. The small areas are stripped of the conductive, layer by etching before the cavities are stripped of the photoresist. The through holes are thus formed in the small areas defined by the cavities.
Abstract:
Die Erfindung betrifft ein laminiertes Substrat zur Montage und Kontaktierung von zwei oder mehr elektronischen Elementen (75) umfassend eine strukturierte erste elektrisch leitende Schicht (70), die mit einer strukturierten isolierenden Schicht (71, 87) laminiert ist, dadurch gekennzeichnet, dass das laminierte Substrat (1, 11, 21, 31, 81, 111, 131) zumindest zwei Einheiten (2, 62, 82, 112, 132) umfasst, wobei jede Einheit (2, 62, 82, 112, 132) zumindest eine Elektrode (4, 5, 64, 65, 84, 114, 115, 134, 135) zur Bereitstellung elektrischer Energie und eine Aufnahmefläche (3, 63, 83, 113, 133) zur Montage von elektronischen Elementen (75) umfasst, wobei neben jeder Aufnahmefläche (3, 63, 83, 113, 133) zumindest eine benachbarte Elektrode (4, 5, 64, 65, 84, 114, 115, 134, 135) angeordnet ist, die gemeinsam eine Einheit (2, 62, 82, 112, 132) bilden, und jede Aufnahmefläche (3, 63, 83, 113, 133) von der zumindest einen benachbarten Elektrode (4, 5, 64, 65, 84, 114, 115, 134, 135) voneinander elektrisch isoliert ist und wobei die Aufnahmeflächen (3, 63, 83, 113, 133) und/oder die Elektroden (4, 5, 64, 65, 84, 114, 115, 134, 135) zumindest zweier benachbarter Einheiten (2, 62, 82, 112, 132) über eine Verbindung (19, 89, 124, 125, 144, 145) oder zwei Verbindungen (9, 69, 119, 139) derart miteinander elektrisch verbunden sind, dass die elektronischen Elemente (75) durch die Verbindung (19, 89, 124, 125, 144, 145) oder Verbindungen (9, 69, 119, 139) elektronisch parallel und/oder in Reihe schaltbar sind, wenn sie auf den Aufnahmeflächen (3, 63, 83, 113, 133) montiert und mit einer Elektrode (4, 5, 64, 65, 84, 114, 115, 134, 135) oder mit zwei Elektroden (4, 5, 64, 65, 84, 114, 115, 134, 135) derselben Einheit (2, 62, 82, 112, 132) kontaktiert sind. Die Erfindung betrifft auch eine elektronische Schaltung umfassend ein solches Substrat mit elektronischen Elementen, ein Laminat zur Herstellung eines solchen Substrats und ein Verfahren zur Herstellung eines solchen Substrats, aus einem solchen Laminat, bei dem das vorstrukturierte Laminat im Bereich der Verbindungen ausgeformt wird, wobei die Elektrode und die Aufnahmefläche oder die Elektroden und die Aufnahmefläche oder die Elektroden der gleichen vorstrukturierten Einheit dabei derart getrennt werden und Elektroden benachbarter vorstrukturierter Einheiten oder Aufnahmeflächen und/oder Elektroden benachbarter vorstrukturierter Einheiten derart elektrisch verbunden bleiben, dass ein Substrat mit Einheiten aufgebaut wird, auf dem elektronische Elemente parallel und/oder in Reihe geschaltet werden, wenn die elektronischen Elemente auf den Aufnahmeflächen mit einer Elektrode oder mit zwei Elektroden derselben Einheit kontaktiert werden.