Abstract:
A fingerprint module includes a cover plate, a fingerprint chip, an intermediate board, and a circuit board. An assembling region is disposed on the cover plate. The fingerprint chip is fixed in the assembling region. The intermediate board is bonded to one surface of the fingerprint chip opposite to the cover plate to press the fingerprint chip. The circuit board is electrically connected to the fingerprint chip via the intermediate board.
Abstract:
A 3-Dimensional multi-layered modular computer (3DMC) is disclosed that comprises removable layers of at least one CPU layer, at least one volatile memory layer, and at least one Input/Output (I/O) interface layers. The layers are stacked in parallel and are electrically connected to create a computing apparatus. Each of the layers is formed from encapsulating material having one or more internal cavities for chip dice, passive components, active components, and conductor's traces. A plurality of Thermal Conducting Rods (TCRs) is capable of conducting and removing heat generated by the components in the layers from the 3DMC apparatus to an external medium. Each TCR perpendicularly passes through the layers.
Abstract:
The invention relates to a printed circuit board arrangement, more particularly a multilayer printed circuit board. The printed circuit board arrangement comprises at least two printed circuit boards which are arranged parallel to one another and connected to one another. According to the invention, in the case of the printed circuit board arrangement of the type mentioned initially, at least one surface region of one printed circuit board is connected to another printed circuit board of the printed circuit board arrangement by means of an element embodied in an elastic and/or damping fashion in such a way that an oscillatory system, more particularly a spring-mass system, an oscillatory bending strip or a flexurally oscillatory board is formed by means of the surface region of the printed circuit board and the element.
Abstract:
Disclosed is an organic EL illumination device-which is provided with: an organic EL element (13) on a glass substrate (10); and a plurality of anode terminal electrodes (11) and cathode terminal electrodes (12) for evenly supplying current to the aforementioned organic EL element (13) on the aforementioned glass substrate (10)-wherein the organic EL illumination device is provided with a wiring board (1) to which a circuit having anode wiring (1a) corresponding to the position of each of the aforementioned anode terminal electrodes (11), and a circuit having cathode wiring (1b) corresponding to the position of each of the aforementioned cathode terminal electrodes (12) are formed.
Abstract:
A cathode ray tube has a thin flexible circuit (48) comprising one or more films of polyimide with a plurality of conductive tracks deposited directly thereon for establishing electrical connection between a multi-pin leadthrough (45) passing through the wall of the tube's envelope (31) and terminals of electrically operable components within the envelope, e.g. electron gun (35) and beam-deflection electrodes (36,39 and 40). A number of track-carrying films may be stacked together to form a laminate structure. Such a flexible circuit avoids outgassing problems and, being thin and flexible, occupies minimal space and is easily routed around internal components to ease assembly