Abstract:
Communications jacks include a housing and a flexible printed circuit board that is at least partly within the housing. Eight input contacts that are mounted on the flexible printed circuit board, with the fourth and fifth input contacts forming a first differential pair, the first and second input contacts forming a second differential pair, the third and sixth input contacts forming a third differential pair, and the seventh and eighth input contacts forming a fourth differential pair. The plug contact regions of the input contacts are arranged in numerical order across a plug aperture of the jack. Eight output contacts are also provided, and the flexible printed circuit board includes conductive paths that electrically connect each input contact to a respective output contact. The fourth and fifth input contacts are mounted on the flexible printed circuit board at respective first and second mounting locations that are closer to a back end of the housing than are respective third and fourth mounting locations where the third and sixth input contacts are mounted on the flexible printed circuit board.
Abstract:
The invention relates to a motor vehicle component support, in particular a motor vehicle door lock (1), and to a method for the production thereof. Said motor vehicle component support is equipped with a strip conductor structure (3) composed of several strip conductors (7). According to the invention, the strip conductor structure (3) comprises at least two conductor strip sub-structures (3a, 3b) which are electrically interconnected by means of at least one connecting element (8) which is applied later.
Abstract:
An implantable medical device (IMD) having a hermetic housing formed from a case and a cover each having an exterior surface and an interior surface. An IMD component is mounted to the interior surface of the cover and has an electrical contact. A hybrid circuit is assembled in the case. The IMD component electrical contact is electrically coupled to the to the hybrid circuit assembled in the case.
Abstract:
The present invention relates to a device and a method at a printed board for obtaining good transmission qualities in transmission conductors on a predetermined area (10) of the printed board (11). A separate component (1) for signal transmission comprises a conductor (5). The component (1) is mounted, with the conductor facing the printed board (11), over the area (10) of the printed board, which requires good transmissions qualities, whereby an air gap (L) is obtained between the conductor (5) and the printed board (11). Soldering joints (21) connect each one of the outer parts (7a, 7b) of the conductor (5) of the component (1) to corresponding pattern conductors (17a, 17b) on the printed board (11). The thickness of the soldering connections and the thickness of the pattern conductors form the air gap (L) between the conductor (5) and the printed board (11). In an alternative embodiment according to the invention, a groove (23) is milled out of the printed board (11) under the conductor (5), obtaining an enlarged air gap between the conductor (5) and the printed board (11).
Abstract:
In a contact device with a plurality of mutually remote and interconnected contact points, the contact points are connected by means of strip-like, flexible conductive track foils in which at least partly electrically separable contact points are connected through via a plurality of at least partly parallel conductive tracks on the foil and in which conductive track sections form direct plug contacts in plug-in regions of modular plug and/or socket devices of the connection device.