Abstract:
An imaging device (500) comprises: a first telecentric system (SYS1) to form a first image (IMG1) of an object (OBJ1),5 a second telecentric system (SYS2) to provide a bundle of output beams (LB5a,LB5b) for forming a second image (IMG2) such that the output beams (LB5a,LB5b) are formed from light received from the first image (IMG1), and a first dispersive element (G1) positioned between the first telecentric system (SYS1) and the second telecentric system (SYS2) to provide a bundle of deflected light beams (LB3a,LB3b) such that the direction of the deflected light beams (LB3a,LB3b) depends on the wavelength (κ), wherein the second telecentric system (SYS2) is arranged to form the output beams (LB5a,LB5b) from light of the deflected light beams (LB3a,LB3b), and the second telecentric system (SYS2) comprises an aperture stop (AP2) to reject light which is outside a selected spectral range (PB1).
Abstract:
Methods and systems for reconstructing individual spectra acquired from laser interrogation spots in a 2D array illuminating a particle are described. A particle is positioned in a 2D array that includes multiple laser interrogation spots. The laser interrogation spots of the particle are detected in the 2D array using a spectrometer. Multifocal spectral patterns are generated based on the laser interrogation spots, and an individual spectrum for each laser interrogation spot is reconstructed based on the plurality of multifocal spectral patterns.
Abstract:
A system (100) and method for spectroscopic mapping, with configurable spatial resolution, of an object include a fiber optic bundle (112) having a plurality of optical fibers arranged in a first array (110) at an input end with each of the plurality of optical fibers spaced one from another and arranged in at least one linear array (114) at an output end. A first mask (108) defining a plurality of apertures equal to or greater in number than the plurality of optical fibers is positioned between an object to be imaged and the input end of the fiber optic bundle. An imaging spectrometer (102) is positioned to receive light from the output end of the fiber optic bundle and to generate spectra of the object. A sensor (118) associated with the imaging spectrometer converts the spectra to electrical output signals for processing by an associated computer.
Abstract:
A multimode configurable imaging spectropolarimeter in which the polarimetry function can be activated and deactivated on demand. The multimode configurable imaging spectropolarimeter comprises a first beamsplitter (420) configured to split incident electromagnetic radiation from a scene into a first optical path and a second optical path; a movable first mirror (430) positioned in the first optical path and configured to reflect electromagnetic radiation in the first optical path, the first mirror being movable over a first scan range to provide a first optical path length difference between the first optical path and the second optical path; a polarizing beamsplitter (450) positioned in the second optical path and configured to split electromagnetic radiation in the second optical path into a first polarization and a second polarization, the first and second polarizations being orthogonal to one another; a movable second mirror (440) positioned in the second optical path and configured to reflect the first polarization, the second mirror being selectively movable over a second scan range to provide a second optical path length difference between the first and second polarizations; and at least one focal plane array sensor (460) configured to receive electromagnetic radiation from the first and second optical paths and to produce a first interferogram corresponding to the first polarization and a second interferogram corresponding to the second polarization and superimposed on the first interferogram, with a frequency offset between the first and second superimposed interferograms. Configuring the imaging transform spectrometer between a spectral imaging mode and a spectropolarimetric imaging mode may be performed by deactivating the movement of the movable first mirror to configure the imaging transform spectrometer into the spectral imaging mode, and activating the movement of the movable first mirror to configure the imaging transform spectrometer into the spectropolarimetric imaging mode. Also a vibration may be imparted to one of the first and second mirrors to prevent formation of interferograms.
Abstract:
An analysis system (e.g., LIBS) includes a laser source generating a laser beam, a movable optic configured to move said laser beam to multiple locations on a sample, and a spectrometer responsive to photons emitted by the sample at those locations and having an output. A controller is responsive to a trigger signal and is configured in a moving spot cycle to adjust the moveable optic, activate the laser source sequentially generating photons at multiple locations on the sample, and process the spectrometer output at each location.
Abstract:
Die Erfindung bezieht sich auf ein optisches Abbildungssystem zur multispektralen Bildgebung. In einem von einem abzubildenden Objekt (1) kommenden Strahlengang befindet sich eine Filteranordnung (11) zur Selektion bestimmter Spektralbereiche, und es ist mindestens eine Detektionseinrichtung (14) für den Empfang der selektierten Spektralbereiche vorgesehen. Erfindungsgemäß umfasst ein solches Abbildungssystem optische Baugruppen (2, 3, 8, 10, 15) zur Erzeugung eines Abbildungsstrahlengangs aus dem von dem abzubildenden Objekt kommenden polychromatischen Licht, eine Filteranordnung (11) zur sequentiellen oder simultanen Selektion bestimmter, zur Abbildung des Objektes vorgesehener Spektralbereiche aus dem Abbildungsstrahlengang, mindestens eine Detektionseinrichtung für das Licht der selektierten Spektralbereiche, und eine mit der Detektionseinrichtung verbundene Bildwiedergabe- und/oder Bildauswerteeinrichtung, wobei die Filteranordnung mehrere, lateral zur Ausbreitungsrichtung des Abbildungsstrahlengangs nebeneinander angeordnete Einzelfilterareale aufweist, die zur Selektion unterschiedlicher Spektralbereiche ausgebildet sind, und eine Ablenkeinrichtung (9) vorhanden ist, durch welche der Abbildungsstrahlengang auf Einzelfilterareale gerichtet ist, deren Eigenschaften den zu selektierenden Spektralbereichen entsprechen.