Abstract:
Es wird eine Bauteilanordnung mit einem elektronischen Bauteil (10) mit wenigstens einem elektrischen Anschlusspin (16); einer Leiterplatte (12) mit wenigstens einer elektrischen Kontaktfläche (14), mit welcher der Anschlusspin (16) des Bauteils (10) in elektrisch leitendem Kontakt steht; und einer Befestigungsvorrichtung zum Sichern des elektrisch leitenden Kontakts zwischen dem Anschlusspin (16) und der Kontaktfläche (14) vorgesehen, bei welchem der Anschlusspin (16) in seinem Endbereich (18) im Wesentlichen parallel zur Leiterplatte (12) verlaufend ausgebildet ist; die Kontaktfläche (14) im Randbereich der Leiterplatte (12) angeordnet ist; und die Befestigungsvorrichtung eine auf den Rand der Leiterplatte (12) aufschiebbare Klemme (20) aufweist, die einen ersten Abschnitt (22) auf der der Kontaktfläche (14) abgewandten Seite der Leiterplatte (12) und einen zweiten Abschnitt (24) auf der der Kontaktfläche (14) zugewandten Seite der Leiterplatte aufweist, welche die Leiterplatte (12), die Kontaktfläche (14) und den Endbereich (18) des Anschlusspins (16) so zwischen sich aufnehmen, dass der Endbereich (18) des Anschlusspins (16) gegen die Kontaktfläche (14) der Leiterplatte (12) gedrückt wird. Eine bevorzugte Anwendung wird zum Beispiel in der lötfreien Verbindung eines Displays mit einer Leiterplatte bei einer Herdschaltuhr gesehen.
Abstract:
Eine Schaltung (1) weist an einem plattenförmigen Träger (2) eine Dickschicht-Leiteranordnung (8) mit ersten Anschlußteilen (11) auf, mit welchen zweite Anschlußteile (13) von Anschlußleitern (15) durch eine Preßschweißverbindung flächig verbunden sind. Die zweiten Anschlußteile (13) sind durch Pressung aus einer Kupferlitze flachbandförmig ausgebildet. Eine zusätzliche, nichtleitende Lagesicherung (30) aus einer Gußmasse (31) legt die Anschlußleiter (15) gegenüber dem Träger (2) formschlüssig fest. Dadurch können sehr hohe Stromleistungen bei sehr hohen Betriebstemperaturen auf einfache Weise übertragen werden.
Abstract:
Component leads (16) are bonded to pads (14) disposed on a non-rigid substrate (10) by the application of a combination of laser energy and ultrasonic energy. The pads preferably are bare-copper pads, without a noble metal coating or a chemical pretreatment, and the non-rigid substrate is preferably an epoxy printed circuit board.
Abstract:
A shock resistant fuselage system includes first and second fuselage side walls (804, 806), each of the first and second fuselage side walls (804, 806) having a plurality of guide posts (802, 1006), and a printed circuit board (PCB) 800 rigidly attached to at least one of the first and second fuselage side walls (804, 806), the PCB 800 having a plurality of guide slots 1008, each of the plurality of guide posts (802, 1006) slideably seated in a respective one of the plurality of guide slots 1008 so that elastic deformation of the PCB 800 is guided by the guide slots 1008 between the first and second fuselage side walls (804, 806).
Abstract:
A surface mount device is disclosed. The surface mount device can include an electronic component operable in an electronic circuit. The surface mount device can also include a heat transfer component thermally coupled to the electronic component. The heat transfer component can have a heat transfer surface configured to interface with a heat sink. In addition, the surface mount device can include a resiliently flexible lead to electrically couple the electronic component to a circuit board. The resiliently flexible lead can be configured to resiliently deflect to facilitate a variable distance of the heat transfer surface from the circuit board, to enable the heat transfer surface and a planar heat transfer surface of another similarly configured surface mount device to be substantially aligned for interfacing with the heat sink.
Abstract:
Embodiments relate generally to wearable electrical and electronic hardware, computer software, wired and wireless network communications, and to wearable/mobile computing devices. More specifically, various embodiments are directed to, for example, aligning a flexible substrate and/or components thereof during fabrication to enhance reliability. In one example, a method includes forming a framework that includes, for example, a portion (e.g., an anchor portion) configured to couple to a flexible substrate, the portion having a neutral axis. Also, the method may include forming a flexible substrate that includes a supported flex region including conductors and one or more rigid regions configured to receive one or more components. A rigid region might include an encapsulated rigid region. The method further may also include aligning the encapsulated rigid region at an angle to the neutral axis, and molding over the encapsulated rigid region.
Abstract:
A system for prototyping electrical circuits, as well as creating production circuits, without using solder. Stand-in electrical components 110a are placed on a carrier 100a and scanned 310. From the resulting data, a machine tool or laser ablation system 410 then creates a negative master 420a with aperture(s) 530 into which production components 810 are placed and secured. Component leads 820 or packages are encapsulated with electrically insulating material 910 with vias 1030a exposing the leads. Traces 1040 connect appropriate leads forming a circuit sub-assembly 1000 which can serve as a basis for a circuit assembly formed through a reverse-interconnection process.
Abstract:
A contact tail for an electronic component useful for attachment of components using conductive adhesive, which may be lead (Pb) - free. The contact tail is stamped, providing a relatively low manufacturing cost and high precision. The contact tail has a distal portion with a large surface area per unit length. The distal portion shapes conductive adhesive into a joint, holding the adhesive adjacent the lead for a more secure joint. Additionally, the distal portion holds adhesive to the contact tail before a joint is formed, facilitating the use of an adhesive transfer process to dispense adhesive. The further aid in the transfer of adhesive, the contact tail may be formed with concave portions, which increase the volume of adhesive adhering to the contact tail. By adhering an increased but controlled amount of adhesive to the contact tail, arrays of contact tails may be simply and reliably attached to printed circuit boards and other substrates.