Abstract:
An apparatus (AS) measures positions of marks (202) on a lithographic substrate (W). An illumination arrangement (940, 962, 964) provides off-axis radiation from at least first and second regions. The first and second source regions are diametrically opposite one another with respect to an optical axis (O) and are limited in angular extent. The regions may be small spots selected according to a direction of periodicity of a mark being measured, or larger segments. Radiation at a selected pair of source regions can be generated by supplying radiation at a single source feed position to a self-referencing interferometer. A modified half wave plate is positioned downstream of the interferometer, which can be used in the position measuring apparatus. The modified half wave plate has its fast axis in one part arranged at 45° to the fast axis in another part diametrically opposite.
Abstract:
An apparatus to measure the position of a mark, the apparatus including an objective lens to direct radiation on a mark using radiation supplied by an illumination arrangement; an optical arrangement to receive radiation diffracted and specularly reflected by the mark, wherein the optical arrangement is configured to provide a first image and a second image, the first image being formed by coherently adding specularly reflected radiation and positive diffraction order radiation and the second image being formed by coherently adding specularly reflected radiation and negative diffraction order radiation; and a detection arrangement to detect variation in an intensity of radiation of the first and second images and to calculate a position of the mark in a direction of measurement therefrom.
Abstract:
A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
Abstract:
A spectroscopic scatterometer detects both zero order and higher order radiation diffracted from an illuminated spot on a target grating. The apparatus forms and detects a spectrum of zero order (reflected) radiation, and separately forms and detects a spectrum of the higher order diffracted radiation. Each spectrum is formed using a symmetrical phase grating, so as to form and detect a symmetrical pair of spectra. The pair of spectra can be averaged to obtain a single spectrum with reduced focus sensitivity. Comparing the two spectra can yield information for improving height measurements in a subsequent lithographic step. The target grating is oriented obliquely so that the zero order and higher order radiation emanate from the spot in different planes. Two scatterometers can operate simultaneously, illuminating the target from different oblique directions. A radial transmission filter reduces sidelobes in the spot and reduces product crosstalk.
Abstract:
A lithographic apparatus includes an alignment sensor including a self-referencing interferometer for reading the position of an alignment target comprising a periodic structure. An illumination optical system for focusing radiation into a spot on said structure. An asymmetry detection optical system receives a share of positive and negative orders of radiation diffracted by the periodic structure, and forms first and second images of said spot on first and second detectors respectively, wherein said negative order radiation is used to form the first image and said positive order radiation is used to form the second image. A processor for processing together signals from said first and second detectors representing intensities of said positive and negative orders to produce a measurement of asymmetry in the periodic structure. The asymmetry measurement can be used to improve accuracy of the position read by the alignment sensor.
Abstract:
An apparatus (AS) measures positions of marks (202) on a lithographic substrate (W). An illumination arrangement (940, 962, 964) provides off-axis radiation from at least first and second regions. The first and second source regions are diametrically opposite one another with respect to an optical axis (O) and are limited in angular extent. The regions may be small spots selected according to a direction of periodicity of a mark being measured, or larger segments. Radiation at a selected pair of source regions can be generated by supplying radiation at a single source feed position to a self-referencing interferometer. A modified half wave plate is positioned downstream of the interferometer, which can be used in the position measuring apparatus. The modified half wave plate has its fast axis in one part arranged at 45° to the fast axis in another part diametrically opposite.
Abstract:
An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
Abstract:
A sensor apparatus includes a sensor chip, an illumination system, a first optical system, a second optical system, and a detector system. The illumination system is coupled to the sensor chip and transmits an illumination beam along an illumination path. The first optical system is coupled to the sensor chip and includes a first integrated optic to configure and transmit the illumination beam toward a diffraction target on a substrate, disposed adjacent to the sensor chip, and generate a signal beam including diffraction order sub-beams generated from the diffraction target. The second optical system is coupled to the sensor chip and includes a second integrated optic to collect and transmit the signal beam from a first side to a second side of the sensor chip. The detector system is configured to measure a characteristic of the diffraction target based on the signal beam transmitted by the second optical system.
Abstract:
A metrology apparatus for and a method of determining a characteristic of interest relating to at least one structure on a substrate. The metrology apparatus comprises a sensor and an optical system. The sensor is for detecting characteristics of radiation impinging on the sensor. The optical system comprises an illumination path and a detection path. The optical system is configured to illuminate the at least one structure with radiation received from a source via the illumination path. The optical system is configured to receive radiation scattered by the at least one structure and to transmit the received radiation to the sensor via the detection path.
Abstract:
Disclosed is a method and associated apparatus for measuring a characteristic of interest relating to a structure on a substrate. The method comprises calculating a value for the characteristic of interest directly from the effect of the characteristic of interest on at least the phase of illuminating radiation when scattered by the structure, subsequent to illuminating said structure with said illuminating radiation.