Abstract:
개인정보단말기을 이용하여 용이하게 시료를 측정하고 처리할 수 있으며, 대량생산이 가능한 전자후각 센서어레이, 이를 포함하는 센서시스템, 그 센서어레이 제조방법 및 그 센서시스템을 이용한 분석방법을 제공한다. 그 센서어레이는 고분자기판의 일측면에 형성되어, 피분석 화학종과 반응하여 전기적인 저항의 변화를 유발하는 복수개의 감지막 및 감지막의 양측에 접촉하며, 저항의 변화를 감지하는 복수개의 감지전극을 포함한다. 전자후각, 센서어레이, 센서시스템, 개인정보단말기, 감지막
Abstract:
A metal-oxide-semiconductor chemical sensor and a fabrication method thereof are provided to make a sensing membrane of a sensor substrate with metal oxide nano-particles to lower the drive temperature. A metal-oxide-semiconductor chemical sensor comprises a sensor substrate(10), a measuring chamber(30) and a light source(20), wherein the sensor substrate includes an insulating substrate, a sensing electrode insulating substrate and a sensing membrane of metal oxide nano-particles deposited on the sensing electrode, so that the metal-oxide-semiconductor chemical sensor is adapted to sense a sample at low temperature below 100°C.
Abstract:
A serum separator is provided to improve convenience of manufacturing and automatically separating serum from the blood by simple pumping without additional devices by arranging the separation member for separating blood corpuscles from the blood without blood corpuscle accumulation to the microchannel. A serum separator for separating serum from whole blood comprises: a body having a cover substrate(500) and a channel substrate(550) which are conjugated each other; a microchannel(400) formed in the body through which the introduced blood(930) flows; separation member(300) formed in the microchannel for separating serum and blood corpuscles by disturbing the flow of blood corpuscles or serum in blood; a blood inlet part(100) communicated with the microchannel; and a blood outlet part(200) communicated with the microchannel. Further, a chemical treating part for increasing a separating efficiency between the serum and the blood corpuscles is additionally contained on the microchannel.
Abstract:
A method of manufacturing a MEMS(Micro Electro Mechanical System) sensor is provided to mount sensors having different functions on one chip in batch by using MEMS technology. A first electrode(102) of a physical quantity detecting sensor is formed on a substrate(100), and then a first sacrificial layer(106) is formed on the entire surface of the substrate comprising the first electrode. An impurity doped layer is formed on the first sacrificial layer over the first electrode, and a second sacrificial layer(108) is formed on the entire surface of the substrate comprising the impurity doped layer. A floating structure having a second electrode(110) is formed on the second sacrificial layer, and then the second and first sacrificial layers are selectively etched to form an etching hole. The first and second sacrificial layers are selectively etched to form an air gap(121) between the first and second electrodes.
Abstract:
A surface modification process of a cycloolefin copolymer substrate is provided to allow easy modification of cycloolefin copolymer substrate, which, otherwise, is not be amenable to surface modification, and to fix various bioactive substances stably to the surface, thereby facilitating production of biosensor chips. A surface modification process of a cycloolefin copolymer substrate comprises the steps of: treating the surface of a cycloolefin copolymer substrate with oxygen plasma to produce hydroxyl groups on the surface of the substrate; treating the oxygen plasma-treated substrate with an acid; and fixing at least one compound having a functional group to the acid-treated substrate. The oxygen plasma treatment is performed at 10-500 W for 2-30 minutes under an oxygen flow rate of 10-500 sccm.
Abstract:
본 발명은 반도체 공정, 특히 포토 리소그라피 공정을 이용할 수 있는 내열성 및 표면 편평도를 가지면서도 열 질량이 적은 플라스틱 구조체를 이용하여 형성된 미세가열 시스템, 그 미세가열 시스템을 이용한 랩온어칩 및 그 미세가열 시스템을 제조방법을 제공한다. 그 미세가열 시스템은 플라스틱(plastic) 필름 및 플라스틱 필름에 코팅된 내화학성 및 내열성의 박막을 구비한 플라스틱 구조체; 및 플라스틱 구조체 상에 형성된 미세 전극 및 가열기(heater)를 구비한 가열기부;를 포함한다. 본 발명의 미세가열 시스템은 플라스틱 필름에 무기 및/또는 유기물 박막을 코팅함으로써, 포토 리소그라피 공정을 통해 미세 전극, 가열기 및 온도 센서 등이 용이하게 형성될 수 있다. 플라스틱 필름, 플라스틱 가열 시스템, 바이오 칩, 랩온어칩
Abstract:
A plastic-based microfabricated thermal device, a method for manufacturing the same device are provided to reduce the production costs of the device while temperature of substrate is uniformly controlled with low power compared to silicon or glass. A plastic-based microfabricated thermal device comprises: a plastic substrate(11); a heating tool which is formed on the upper side of plastic substrate, heats the plastic substrate and contains a heater(12A), an electrode(12C) and pads(12D, 12E) for supplying electric source to the heater through the electrode; a sensing tool(12B) which is formed on the upper side of plastic substrate and detects heat; and a diffusion tool(12F) which is formed in the rear side of the plastic substrate and diffuses heat to the plastic substrate, and further comprises an insulating membrane(13A) for covering the heating tool, sensing tool and diffusion tool in the upper and rear sides of substrate. The DNA amplification chip contains the plastic-based microfabricated thermal device, a silicon micro chamber which has a concave portion and is conjugated to the plastic-based microfabricated thermal device, and a cover for forming a reaction chamber by covering the concave portion.
Abstract:
본 발명은 유체의 유동 및 그의 유량을 제어할 수 있는 열공압 마이크로 밸브에 관한 것이다. 상기 본 발명에 따른 열공압 마이크로밸브는 유체를 유동시키기 위한 채널들; 상기 채널들을 연결하는 유동 제어 챔버; 온도 변화에 따라 부피가 팽창하는 매질을 포함하는 압력 제어 챔버; 상기 압력 제어 챔버의 매질의 온도를 제어하기 위한 온도 제어부; 및 상기 유동 제어 챔버 및 압력 제어 챔버를 분할하고 상기 압력 제어 챔버의 압력이 증가하는 경우 탄성 변형되어 상기 유동 제어 챔버를 차지함으로써 상기 채널들의 유체 유동을 제어하는 멤브레인을 포함한다.
Abstract:
A thermo-pneumatic micro valve with a membrane is provided to be applied for pumping liquid in a flow control chamber in a predetermined direction through a continuous heating and cooling. A thermo-pneumatic micro valve with a membrane includes a plurality of channels, a flow control chamber(102), a pressure control chamber(107), a pair of temperature control units(105,106), and a membrane(101). The channels are connected with the flow control chamber. The flow control chamber controls the flow and an amount of the fluid in the channels. The pressure control chamber is wrapped by a side wall formed in a second substrate, a top of which is wrapped by the membrane, a bottom of which is wrapped by a temperature control substrate(108). The temperature control unit controls a temperature of a medium of the pressure control chamber. The membrane controls the flow of the fluid of the channels.
Abstract:
A monolithic MEMS(Micro-Electro Mechanical System) sensor without a step and a method of fabricating the same are provided to use a quality high temperature deposited layer for an MEMS since formation of a membrane is performed before a metal wiring process of a reading circuit. In a monolithic MEMS sensor without a step, an MEMS is formed on a left side of a substrate(10) as a first region. A reading circuit(50) is formed on a right side of the substrate as a second region. The MEMS includes a protection layer(20), a membrane(40), an insulation layer(41), and a sensor electrode(60) on the substrate. The protection layer is formed of a silicon oxide layer or a silicon nitride layer. The membrane is formed on a top of the protection layer as a silicon nitride layer or a silicon oxide layer. The insulation layer is formed of a silicon oxide layer. The sensor electrode is formed of a conductive material on the insulation layer. And, a sacrificial layer burying a trench is removed by an etching path(70).