Abstract:
Disclosed is a laminated (or non-laminated) conductive interconnection for joining an integrated circuit device to a device carrier, where the conductive interconnection comprises alternating metal layers and polymer layers. In addition, the polymer can include dendrites, metal projections from the carrier or device, and/or micelle brushes on the outer portion of the polymer. The polymer layers include metal particles and the alternating metal layers and polymer layers form either a cube-shaped structure or a cylinder-shaped structure.
Abstract:
A substrate according to the present invention includes a metal plate, and an insulating film, which is provided on the surface of the metal plate and which includes needle alumina particles and granular particles. The substrate of the present invention has excellent insulating property and can be manufactured on an industrial basis with acceptable efficiency.
Abstract:
Compositions and methods for production of conductive paths can include a printable composition including a liquid carrier and a plurality of nanostructures. The plurality of nanostructures can have an aspect ratio of at least about 5:1 within the liquid carrier. Examples of nanostructures include nanobelts, nanoplates, nanodiscs, nanowires, nanorods, and mixtures of these materials. These printable compositions can be used to form a conductive path on a substrate. The printable composition can be applied to a substrate using any number of conventional printing techniques. Following application of the printable composition, at least a portion of the liquid carrier can be removed such that the nanostructures can be in sufficient contact to provide a conductive path. The nanostructures arranged in a conductive path can be sintered or used as a conductive material without sintering.
Abstract:
A soldered assembly for a microelectronic element includes a microelectronic element, solder columns extending from a surface of the microelectronic element and terminals connected to distal ends of the columns. The assembly can be handled and mounted using conventional surface-mount techniques, but provides thermal fatigue resistance. The solder columns may be inclined relative to the chip surface, and may contain long, columnar inclusions preferentially oriented along the lengthwise axes of the columns.
Abstract:
An electronic assembly comprising a first electronic element, a second electronic element, and a durably flexible bond therebetween. The bond comprises an anisotropic conductive adhesive that includes elongated electrically conductive particles. The bond provides at least one electrical pathway between the first electronic element and the second electronic element through an elongated contact region. This bond is functionally maintained for at least about 200 flexes.
Abstract:
The present invention is a connection material which enables a flexible circuit board to be connected to a bare IC chip without causing a shoulder touch effect. The connection material contains an insulating adhesive and a flaky or fibrous insulating filler dispersed therein is used for connecting a film-like flexible circuit board and a bare IC chip. The aspect ratio of the flaky or fibrous insulating filler is no less than 20.
Abstract:
A process for producing an electrolessly plated molded article, which includes molding a resin composition made of a thermoplastic resin having a specific Izod impact strength and a Rockwell surface hardness and an inorganic filler, then treating the surface of the molded article with air blast using an abrasive having a sharp granular shape, and then conducting catalyst coating, activation treatment and electroless plating. It has been possible to apply the electroless plating with a high adhesion strength to the molded article of the thermoplastic resin composition without conducting the chemical etching treatment.
Abstract:
A process for producing an electrolessly plated molded article, which includes molding a resin composition made of a thermoplastic resin having a specific Izod impact strength and a Rockwell surface hardness and an inorganic filler, then treating the surface of the molded article with air blast using an abrasive having a sharp granular shape, and then conducting catalyst coating, activation treatment and electroless plating. It has been possible to apply the electroless plating with a high adhesion strength to the molded article of the thermoplastic resin composition without conducting the chemical etching treatment.
Abstract:
Methods for inhibiting abrasive wear of a fiber strand comprising at least one glass fiber by sliding contact with surface asperities of a solid object, comprising (a) applying a composition to at least a portion of a surface of at least one glass fiber of a glass fiber strand; (b) at least partially drying the composition to form a sized glass fiber strand having a residue of the composition upon at least a portion of the surface of the at least one class fiber; and (c) sliding at least a portion of the glass fiber strand to contact surface asperities of a solid object, the surface asperities having a hardness value which is greater than a hardness value of the at least one glass fiber, such that abrasive wear of the at least one glass fiber of the glass fiber strand by contact with the surface asperities of the solid object is inhibited by the inorganic solid lubricant particles.
Abstract:
An electronic structure including a metallic interlocking structure for bonding a conductive plated layer to metal surface, and a method of forming the electronic structure. The method provides a substrate having a metallic sheet within a dielectric layer. The metallic sheet includes a metal such as copper. An opening in the substrate, such as a blind via, is formed by laser drilling through the dielectric layer and partially through the metallic sheet. If the opening is a blind via, then the laser drilling is within an outer ring of the blind via cross section using a laser beam having a target diameter between about 20% and about 150% of a radius of the blind via cross section. A surface at the bottom of the opening, called a “blind surface,” includes a metallic protrusion formed by the laser drilling, such that the metallic protrusion is integral with a portion of the blind surface. The metallic protrusion includes the metal of the metallic sheet and at least one constituent element from the dielectric layer. The metallic protrusion is then etched to form a metallic interlocking structure that is integral with the portion of the blind surface. The metallic interlocking structure includes discrete metallic fibers, with each metallic fiber having a curved (or curled) geometry. Each metallic fiber has its own unique composition that includes the metal, at least one constituent element of the dielectric layer, or both.