Abstract:
일 실시예에서, 기판을 성형하는 방법이 제 1 지지 층을 제공하는 단계, 상기 제 1 지지 층 상에 제 1 성형 패턴을 제공하는 단계, 상기 제 1 성형 패턴 상에 기판을 제공하는 단계, 상기 제 1 성형 패턴 상에 배치된 기판 상에서 제 1 화학적 기계적 폴리싱(CMP) 프로세스를 실시하는 단계, 및 폴리싱된 기판을 상기 제 1 성형 패턴으로부터 제거하는 단계를 포함한다.
Abstract:
PURPOSE: A method for manufacturing a micro inertial sensor is provided to improve reliability and capability by processing a thick silicon joined to a glass in a high section ratio so that a measured surface and thickness becomes large, to eliminate parasitic capacitance generally caused by a silicon substrate by using glass as a substrate instead of silicon, and to reduce a manufacturing cost by a simple process using a mask. CONSTITUTION: A method for manufacturing a micro inertial sensor comprises the steps of: bonding a bulk silicon on a glass substrate; polishing the bonded bulk silicon to a desired thickness; forming an inertial sensor structure by etching the polished bulk silicon by an anisotropic etching method; forming a vacuum space by etching glass of a bottom portion of the silicon inertial sensor structure; and evaporating metal for an electrode on the entire surface of the etched chips.
Abstract:
본 발명의 실시예는 전기 화학적 제조 프로세스 동안 편평해진 재료 (예를 들어, 층)에 대한 엔드포인트 검출과 평행성 유지가 개선된 다중 층 구조물 (예를 들어, 메소스케일 또는 마이크로스케일 구조물)을 전기 화학적으로 제조하기 위한 프로세스 및 장치를 제공한다. 몇 방법들은 임의의 허용 오차 내에서 평탄해진 재료의 면이 다른 적층된 면에 평행한 것을 확실히 하는 평탄화 동안 고정구를 이용한다. 몇 방법은 기판의 초기 표면에 대해, 제1 적층에 대해, 또는 제조 프로세스 동안 형성된 다른 층에 대해 적층 재료의 정밀한 높이를 보장하는 엔드포인트 검출 고정구를 이용한다. 몇 실시예에서는 평탄화가 래핑으로 이루어지고 다른 실시예에서는 다이아몬드 플라이 커팅 머신을 이용한다. 전기 화학적 제조, 다중 층 구조물, 고정구, 플라이 커팅, 평탄화 동작, 엔드포인트 검출
Abstract:
PURPOSE: A chemical and mechanical polishing composition and a method for polishing a chemical machine are provided to selectively eliminate a barrier material about interconnect metal and dielectric substances. CONSTITUTION: A chemical and mechanical method for polishing a substrate comprises the following steps; offering the substrate including a barrier material under the presence of interconnect metal or k dielectric material; offering a chemical and mechanical polishing composition including abrasive 1-40 wt%, oxidizing agent 0-10 wt%, quaternary compound 0.001-5 wt%, and a material of a chemical formula (I) and has pH less than 5; offering a chemical and mechanical polishing pad; raising dynamic contact on the interface between the chemical and mechanical polishing pad and the substrate; distributing the chemical and mechanical polishing composition on the interface between the chemical and mechanical polishing pad and the substrate.
Abstract:
The damascene wiring structure includes a base including a main surface provided with a groove, an insulating layer including a first portion provided on an inner surface of the groove and a second portion provided on the main surface, a metal layer provided on the first portion, a wiring portion embedded in the groove, and a cap layer provided to cover the second portion and the wiring portion. A surface of a boundary part between the first portion and the second portion includes an inclined surface inclined with respect to a direction perpendicular to the main surface.
Abstract:
A substrate for sensing, a method of manufacturing the substrate, and an analyzing apparatus including the substrate are provided. The substrate for sensing includes: a support layer; a plurality of metal nanoparticle clusters arranged on the support layer; and a plurality of perforations arranged among the plurality of metal nanoparticle clusters. The plurality of metal nanoparticle clusters each comprise a plurality of metal nanoparticles stacked in a three-dimensional structure. Each of the plurality of perforations transmits incident light therethrough.
Abstract:
A micro-electro-mechanical system (MEMS) device includes a supporting substrate, a cavity disposed in the supporting substrate, a stopper, and a MEMS structure. The stopper is disposed between the supporting substrate and the cavity, and an inner sidewall of the stopper is in contact with the cavity. The stopper includes a filling material surrounding a periphery of the cavity, and a liner wrapping around the filling material. The MEMS structure is disposed over the cavity and attached on the stopper and the supporting substrate.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.