Abstract:
A MEMS device is disclosed. The MEMS device includes a first substrate. At least one structure is formed within the first substrate. The first substrate includes at least one first conductive pad thereon. The MEMS device also includes a second substrate. The second substrate includes a passivation layer. The passivation layer includes a plurality of layers. A top layer of the plurality of layers comprises an outgassing barrier layer. At least one second conductive pad and at least one electrode are coupled to the top layer. At least one first conductive pad is coupled to the at least one second conductive pad.
Abstract:
A non-magnetic lid for sealing a hermetic package. The lid includes a molybdenum substrate having a sputtered adhesion layer and a copper seed layer. The lid also includes a plated palladium solder base layer, and has gold/tin solder preforms attached to a sealing surface of the lid.
Abstract:
A MEMS device having a channel configured to avoid particle contamination is disclosed. The MEMS device includes a MEMS substrate and a base substrate. The MEMS substrate includes a MEMS device area, a seal ring and a channel. The seal ring provides for dividing the MEMS device area into a plurality of cavities, wherein at least one of the plurality of cavities includes one or more vent holes. The channel is configured between the one or more vent holes and the MEMS device area. Preferably, the channel is configured to minimize particles entering the MEMS device area directly. The base substrate is coupled to the MEMS device substrate.
Abstract:
The present invention concerns a microelectronic package (1) comprising a microelectronic structure (2) having at least a first opening (3) and defining a first cavity (4), a capping layer (9) having at least a second opening (10) and defining a second cavity (11) which is connected to the first cavity (4), wherein the capping layer (9) is arranged over the microelectronic structure (2) such that the second opening (10) is arranged over the first opening (3), and a sealing layer (13) covering the second opening (10), thereby sealing the first cavity (4) and the second cavity (11). Moreover, the present invention concerns a method of manufacturing the microelectronic package (1).
Abstract:
Disclosed is a method of manufacturing a capacitive micro-machined ultrasonic transducer (CMUT) device comprising a first electrode (112) on a substrate (110) and a second electrode (122) embedded in an electrically insulating membrane, the first electrode and the membrane being separated by a cavity (130) formed by the removal of a sacrificial material (116) in between the first electrode and the membrane, the method comprising forming a membrane portion (22) on the second electrode and a further membrane portion (24) extending from the membrane portion towards the substrate alongside the sacrificial material, wherein the respective thicknesses the membrane portion and the further membrane portion exceed the thickness of the sacrificial material prior to forming said cavity. A CMUT device manufactured in accordance with this method and an apparatus comprising such a CMUT device are also disclosed.
Abstract:
Methods of chemically encoding high-resolution shapes in silicon nanowires during metal nanoparticle catalyzed vapor-liquid-solid growth or vapor-solid-solid growth are provided. In situ phosphorus or boron doping of the silicon nanowires can be controlled during the growth of the silicon nanowires such that high-resolution shapes can be etched along a growth axis on the silicon nanowires. Nanowires with an encoded morphology can have high-resolution shapes with a size resolution of about 1,000 nm to about 10 nm and comprise geometrical shapes, conical profiles, nanogaps and gratings.
Abstract:
CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
Abstract:
Methods for fabricating sublithographic, nanoscale microstructures utilizing self-assembling block copolymer, and films and devices formed from these methods are provided.