Abstract:
Methods of forming semiconductor structures comprising one or more cavities (106), which may be used in the formation of microelectromechanical system (MEMS) transducers, involve forming one or more cavities in a first substrate (100), providing a sacrificial material (110) within the one or more cavities, bonding a second substrate (120) over the a surface of the first substrate, forming one or more apertures (140) through a portion of the first substrate to the sacrificial material, and removing the sacrificial material from within the one or more cavities. Structures and devices are fabricated using such methods.
Abstract:
In one embodiment, a method of forming an out-of-plane electrode includes forming an oxide layer above an upper surface of a device layer, etching an etch stop perimeter defining trench extending through the oxide layer, forming a first cap layer portion on an upper surface of the oxide layer and within the etch stop perimeter defining trench, etching a first electrode perimeter defining trench extending through the first cap layer portion and stopping at the oxide layer, depositing a first material portion within the first electrode perimeter defining trench, depositing a second cap layer portion above the deposited first material portion, and vapor releasing a portion of the oxide layer with the etch stop portion providing a lateral etch stop.
Abstract:
Procédé de gravure d'un motif complexe souhaité (50), dans une première face d'un substrat, comportant les étapes suivantes : - gravure simultanée d'au moins un premier et deuxième sous-motifs à travers la première face du substrat, les sous-motifs gravés étant séparés par au moins une paroi de séparation, la largeur du premier sous-motif étant plus importante que la largeur du second sous-motif au niveau de la première face, et la profondeur du premier sous-motif étant plus importante que la profondeur du second sous-motif selon une direction perpendiculaire à ladite première face, - une étape de retrait ou d'élimination de ladite paroi de séparation, pour révéler le motif complexe souhaité (50).
Abstract:
A method for manufacturing a protective layer (25) for protecting an intermediate structural layer (22) against etching with hydrofluoric acid (HP), the intermediate structural layer (22) being made of a material that can be etched or damaged by hydrofluoric acid, the method comprising the steps of: forming a first layer of aluminium oxide, by atomic layer deposition, on the intermediate structural layer (22); performing a thermal crystallization process on the first layer of aluminium oxide, forming a first intermediate protective layer (25a),- forming a second layer of aluminium oxide, by atomic layer deposition, above the first intermediate protective layer; and performing a thermal crystallisation process on the second layer of aluminium oxide, forming a second intermediate protective layer (25b) and thereby completing the formation of the protective layer (25). The method for forming the protective layer (25) can be used, for example, during the manufacturing steps of an inertial sensor such as a gyroscope or an accelerometer.
Abstract:
The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.
Abstract:
The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.
Abstract:
In einem Verfahren zur Herstellung eines MEMS Bauelements, bei dem im Zuge einer Herstellung des Mehrebenen-Leitbahnschichtstapels zur Verbindung mikroelektronischer Schaltungen gleichzeitig später freizulegende mikromechanische Strukturelemente (7, 8, 9) eingebettet werden, wird anschließendeine Ausnehmung von einer Substratrückseite (R) bis zur dem Mehrebenen-Leitbahnschichtstapel hergestellt, und dann die mikromechanischen Strukturelemente im Mehrebenen-Leitbahnschichtstapel durch die Ausnehmung hindurch freigelegt. Zur Erhöhung der Prozessgenauigkeit wird schon im Zuge der Herstellung des Mehrebenen-Leitbahnschichtstapels oder sogar im Front end of Line eine Referenzmaske (22) zur Definition einer lateralen Position oder einer lateralen Erstreckung derfreizulegenden mikromechanischen Strukturelemente (7, 8, 9) hergestellt, wobei die Referenzmaske (22) auf der Substratvorderseite zwischen dem Substrat und dem Mehrebenen-Leitbahnschichtstapel oder in einer im Vergleich mit dem Strukturelement dem Substrat (1) näher gelegenen Schicht des Mehrebenen- Leitbahnschichtstapels angeordnet wird.
Abstract:
This invention discloses a MEMS device supported on a substrate formed with electric circuit thereon. The MEMS device includes at least an electrode connected to the circuit and at least a movable element that is controlled by the electrode. The MEMS device further includes a conformal protective layer over the electrode and the circuit wherein the protective layer is semiconductor-based material. In a preferred embodiment, the MEMS device is a micromirror and the semiconductor material is one of a group of materials consisting of Si, SiC, Ge, SiGe, SiNi and SiW.
Abstract:
The present invention relates to a method for etching a feature in an etch layer that has a thickness of more than 2 micrometer from an initial contact face for the etchant to an opposite bottom face of the etch layer, at a lateral feature position in the etch layer and with a critical lateral extension at the bottom face. The method comprises fabricating, at the lateral feature position on the substrate layer, a mask feature from a mask-layer material, the mask feature having the critical lateral extension. The etch layer is deposited to a thickness of more than 2 micrometer, on the mask feature and on the substrate layer, from an etch-layer material, which is selectively etchable relative to the mask-layer material. Then, the feature is etched in the etch layer at the first lateral position with a lateral extension larger than the crit ical lateral extensio n, using an etchant that selectively removes the etch layer-material relative to the mask-layer material.
Abstract translation:本发明涉及一种用于蚀刻蚀刻层中的特征的方法,该特征从蚀刻剂的初始接触面到蚀刻层的相对底面具有大于2微米的厚度, 在蚀刻层中的横向特征位置处并且在底面处具有临界横向延伸。 该方法包括在衬底层上的横向特征位置处制造来自掩模层材料的掩模特征,该掩模特征具有临界横向延伸。 蚀刻层被沉积到掩模特征上和衬底层上超过2微米的厚度,由可相对于掩模层材料选择性蚀刻的蚀刻层材料沉积。 然后,使用相对于掩模层材料选择性地移除蚀刻层材料的蚀刻剂,在横向延伸大于临界横向延伸n的第一横向位置蚀刻层中的特征被蚀刻。 p >
Abstract:
The fabrication of a MEMS device such as an interferometric modulator is improved by employing an etch stop layer 104b between a sacrificial layer and an electrode 14a, 14b, 14c. The etch stop 104b may reduce undesirable over-etching of the sacrificial layer and the electrode 14a, 14b, 14c. The etch stop layer 104b may also serve as a barrier layer, buffer layer, and/or template layer. The etch stop layer 104b may include silicon-rich silicon nitride.