Abstract:
A device comprises a silicon-on-insulator (SOI) substrate having first and second silicon layers with an insulator layer interposed between them. A structural layer, having a first conductivity type, is formed on the first silicon layer. A well region, having a second conductivity type opposite from the first conductivity type, is formed in the structural layer, and resistors are diffused in the well region. A metallization structure is formed over the well region and the resistors. A first cavity extends through the metallization structure overlying the well region and a second cavity extends through the second silicon layer, with the second cavity stopping at one of the first silicon layer and the insulator layer. The well region interposed between the first and second cavities defines a diaphragm of a pressure sensor. An integrated circuit and the pressure sensor can be fabricated concurrently on the SOI substrate using a CMOS fabrication process.
Abstract:
A method of forming a MEMS device (10) includes forming a sacrificial layer (34) over a substrate (12). The method further includes forming a metal layer (42) over the sacrificial layer (34) and forming a protection layer (44) overlying the metal layer (42). The method further includes etching the protection layer (44) and the metal layer (42) to form a structure (56) having a remaining portion of the protection layer formed over a remaining portion of the metal layer. The method further includes etching the sacrificial layer (34) to form a movable portion of the MEMS device, wherein the remaining portion of the protection layer protects the remaining portion of the metal layer during the etching of the sacrificial layer (34) to form the movable portion of the MEMS device (10).
Abstract:
A method for separating a plurality of dies on a Micro-Electro-Mechanical System (MEMS) wafer comprising scribing a notch on a first side of the wafer between at least two of the plurality of dies on a first surface and depositing a metal on the first surface of the plurality of dies. The method further comprises scribing a second side of the wafer between at least two of the plurality of dies from a second surface thereof through the notch. The first side and second side are substantially parallel and opposite each other and the first surface and the second surface are substantially parallel and opposite each other. In a process in accordance with the present invention, a method to minimize chipping of the bonding portion of a MEMs device during sawing of the wafer is provided, which minimally affects the process steps associated with separating the die on a wafer.
Abstract:
A method for separating a plurality of dies on a Micro-Electro-Mechanical System (MEMS) wafer comprising scribing a notch on a first side of the wafer between at least two of the plurality of dies on a first surface and depositing a metal on the first surface of the plurality of dies. The method further comprises scribing a second side of the wafer between at least two of the plurality of dies from a second surface thereof through the notch. The first side and second side are substantially parallel and opposite each other and the first surface and the second surface are substantially parallel and opposite each other. In a process in accordance with the present invention, a method to minimize chipping of the bonding portion of a MEMs device during sawing of the wafer is provided, which minimally affects the process steps associated with separating the die on a wafer.
Abstract:
The invention relates to a method of protecting the interior of at least one cavity (4) which has a part of interest (5) and which opens onto a face of a microstructured element (1), the method consisting in depositing onto said face a non-conformal layer (6) of a protective material, said non-conformal layer plugging the cavity without covering the part of interest. The invention also relates to a method of producing a device comprising such a microstructured element.
Abstract:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
Abstract:
A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate (step 102). The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component (step 104 or 106). The sacrificial material is removed with a release solution (step 108 or 110). At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.
Abstract:
A method of forming a membrane with nanometer scale pores includes forming a sacrificial etch stop layer on a substrate. A base layer is constructed on the sacrificial etch stop layer. Micrometer scale pores are formed within the base layer. A sacrificial base layer is built on the base layer. The sacrificial base layer is removed from selected regions of the base layer to define nanometer scale pores within the base layer. The resultant membrane has sub-fifty nanometer pores formed within it.