Abstract:
A PTC device formed integrally on a PCB substrate, such a PCB substrate, a secondary battery protection circuit device comprising such PCB substrate provided with a circuit to control the voltage and current of secondary batteries, and a secondary battery assembly provided with said device. A PCB substrate 1 is provided with an electronic component 2 and a PTC device 3. The PTC device 3 has a construction having a PTC material 6 in the center, which is provided with foils 7, 7′ made of nickel foil on its top and bottom; an outlet electrode 4 is provided on the foil 7, and an outlet electrode 5, provided on the PCB substrate, is soldered below.
Abstract:
A thermistor with positive resistance-to-temperature characteristic used in a overcurrent protection circuit has electrodes on mutually opposite main surfaces and is mounted to a substrate having electrically conductive members such that deterioration of its voltage resistance due to heat emission can be controlled. A spacer with smaller thermal conductivity than the substrate and penetrated by a conductor piece with a small cross-sectional area is inserted between solder materials connecting to one of the thermistor electrodes. The other electrode is contacted by an elongated connecting member through its sectional surface transverse to its longitudinal direction such that the cross-sectional area of electrical conduction is reduced.
Abstract:
A method for achieving a desired value of electrical impedance between conductors of an electrical power distribution structure by electrically coupling multiple bypass capacitors and corresponding electrical resistance elements in series between the conductors. The resistance elements may be annular resistors, and may provide the designer a greater degree of control of the system ESR. The annular resistors may comprise a first terminal, an annular resistor, and a second terminal. The second terminal may be located within the confines of the annular resistor. The annular resistors may be printed onto a conductive plane (e.g. a power plane or a ground plane), or may be a discrete component.
Abstract:
The invention relates to a method and device for interconnecting, in three dimensions, electronic components. In order to decrease the parasitic capacitances between the connections and shielding (304) of the device, metallized (42) grooves (40, 41) are cut in the block (3null) of stacked circuits, the conductors (21) of which are set back from the corresponding face (302) of the block, these grooves just clipping the connection conductors (21). The assembly is then encapsulated with resin (303) and shielded by metallization (304). The invention is especially applicable to producing electronic systems in three dimensions with a small size.
Abstract:
In a polarized electrical component, a first electrode is provided at an inner-side bottom face of the component, and a second electrode is provided at an outer-side bottom face of the component. One of the first and second electrodes serves as an anode electrode, and the other serves as a cathode electrode.
Abstract:
Thin-profile battery circuits and constructions, and in particular button-type battery circuits and constructions and methods of forming the same are described. In one implementation, a substrate is provided having an outer surface with a pair of spaced electrical contact pads thereon. At least two thin-profile batteries are conductively bonded together in a stack having a lowermost battery and an uppermost battery. The batteries include respective positive and negative terminals. The lowermost battery has one of its positive or negative terminals adhesively bonded to one of the pair of electrical contact pads while the uppermost battery has one of its positive or negative terminals electrically connected to the other of the pair of electrical contact pads. The batteries can be provided into parallel or series electrical connections.
Abstract:
A varistor with no connecting legs extending from it, is mounted in a slot formed in a printed circuit board. The printed circuit board carries the normal circuit tracks. The physical and electrical connection between the printed circuit board and the varistor is achieved by the use of solder. When the varistor overheats to a temperature beyond a predetermined temperature, the solder melts and the varistor is separated from the printed circuit board. A leaf spring which is biased when the varistor is inserted into the slot pushes the varistor out of the slot when the solder melts. Alternatively, when the solder melts gravity causes the varistor to fall out of the printed circuit board.
Abstract:
In a surface mount assembly, an active integrated circuit device, such as, for example, a dynamic random access memory, typically has a lead finger attached to a solder pad of a printed wiring board. The surface mount assembly is significantly improved by configuring a passive component, such as a resistor or capacitor, such that it has metallic terminations on an upper and lower surface so that it may be positioned between the solder pad of the printed wiring board and the lead finger.
Abstract:
An electrical circuit package comprise a stamped and formed lead frame to which is molded a dielectric housing member which includes openings having exposed electrical contacts, the housing member providing support for the lead frame. Some of the exposed contacts in the openings serve to support electrical components in the openings and to make electrical contact therewith while other of the exposed contacts in the openings electrically engage the electrical components and maintain them in the openings. Further exposed contacts electrically engage another electrical component and the housing member and the further exposed contacts maintain the other electrical component in the housing member. An electrical switch is part of the lead frame.