Abstract:
The present invention is directed to the use of deposited thin films for chemical or biological analysis. The invention further relates to the use of these thin films in separation adherence and detection of chemical of biological samples. Applications of these thin films include desorption-ionization mass spectroscopy, electrical contacts for organic thin films and molecules, optical coupling of light energy for analysis, biological materials manipulation, chromatographic separation, head space adsorbance media, media for atomic molecular adsorbance or attachment, and substrates for cell attachment.
Abstract:
An optical scanning device, which is a MEMS element, includes a first insulating layer, a first semiconductor layer, a second insulating layer, and a second semiconductor layer that are laminated in this order, a first doped region formed at an interface between the first insulating layer and the first semiconductor layer, a second doped region formed at an interface between the first semiconductor layer and the second insulating layer, and a first wiring portion and a second wiring portion disposed on the first insulating layer apart from each other. The first doped region and the second doped region are electrically connected in parallel between the first wiring portion and the second wiring portion.
Abstract:
An ultrasound transducer device made by a process that includes the steps of forming depositing a first layer on a substrate, depositing a second layer on the first layer, patterning the second layer at a region corresponding to a location of a transducer cavity, depositing a third layer that refills regions created by patterning the second layer, planarizing the third layer to a top surface of the second layer, removing the second layer, conformally depositing a fourth layer over the first layer and the third layer, defining the transducer cavity in a support layer formed over the fourth layer; and bonding a membrane to the support layer.
Abstract:
A method of forming an ultrasonic transducer device involves depositing a first layer on a substrate, depositing a second layer on the first layer, patterning the second layer at a region corresponding to a location of a transducer cavity, depositing a third layer that refills regions created by patterning the second layer, planarizing the third layer to a top surface of the second layer, removing the second layer, conformally depositing a fourth layer over the first layer and the third layer, defining the transducer cavity in a support layer formed over the fourth layer; and bonding a membrane to the support layer.
Abstract:
The invention is a process for producing an electromechanical device including a movable portion that is able to deform with respect to a fixed portion. The process implements steps based on fabrication microtechnologies, applied to a substrate including an upper layer, an intermediate layer and a lower layer. These steps are: a) forming first apertures in the upper layer; b) forming an empty cavity in the intermediate layer, which step is referred to as a pre-release step because a central portion of the upper layer lying between the first apertures is pre-released; c) applying what is called a blocking layer to the upper layer, this layer covering the first apertures, the blocking layer and the central portion together forming a suspended microstructure above the empty cavity; d) producing a boundary trench in the suspended microstructure, so as to form, in this microstructure, a movable portion and a fixed portion, the movable portion forming a movable member of the electromechanical device.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
A method of forming microneedles where through a series of coating and etching processes microneedles are formed from a surface as an array. The microneedles have a bevelled end and bore which are formed as part of the process with no need to use a post manufacturing process to finish the microneedle.
Abstract:
Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
Abstract:
Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.