Abstract:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.
Abstract:
A spectrometer configurable for field analyses of chemical properties of a material is provided. The spectrometer includes: at least one sensor adapted for providing Fourier transform infrared spectroscopy (FTIR) surveillance and at least another sensor for providing Raman spectroscopy surveillance. The spectrometer can be provided with a user accessible instruction set for modifying a sampling configuration of the spectrometer. A method of determining the most likely composition of a sample by at least two technologies using the spectrometer is also provided.
Abstract:
A portable system and method for detecting drug materials. A portable system may comprise at least one collection lens for collecting a plurality of interacted photons, a tunable filter for filtering the photons, and a SWIR detector for generating at least one SWIR data set representative of a first location comprising an unknown sample. A processor may analyze the SWIR data set to associate the unknown material with a known drug material. A method may comprise collecting a plurality of interacted photons, filtering the interacted photons into a plurality of wavelength bands, detecting the filtered photons to generate a SWIR data set and analyzing the SWIR data set to associate an unknown material with a known drug material.
Abstract:
In an embodiment, an apparatus includes a module assembly and a main assembly. The module assembly includes a module assembly housing, a first face plate and an analysis unit attached to the first face. The main assembly includes a main assembly housing, a second face plate and an engine unit rigidly attached to the second face plate. The engine unit generates a light that passes to the analysis unit via a first lens assembly and a second lens assembly. The first lens assembly is attached to the first face plate and the second lens assembly is attached to the second face plate. The module assembly when attached to the main assembly causes the first and second face plates to act as a single mechanical unit that moves independent of movement of the module assembly housing and/or the main assembly housing.
Abstract:
A method and a portable device for assessing the occurrence of an agent in a sample. A sample is illuminated with photons emanating from a portable device to produce photons reflected, emitted, or absorbed from a set of multiple points in the sample having a defined geometric relationship. The portable device is used to simultaneously illuminate the sample and analyze the photons reflected, emitted, or absorbed from the set of multiple points using spectroscopic methods, including infrared, fluorescence, and UV/visible. The agent assessed may include a hazardous agent, a chemical agent, a biological agent, a microorganism, a bacterium, a protozoan, a virus, and combinations thereof.
Abstract:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.
Abstract:
An optical emission spectroscopic system contains multiple distinct light paths that provide increased light to a spectrometer, thereby increasing sensitivity and signal-to-noise of the system.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
A device includes a housing; a color sensor within a first end of the housing, the color sensor configured to sense a color of a sample when the color sensor is placed proximate the sample; and a display within the housing, the display configured to display the color of the sample sensed by the color sensor.
Abstract:
According to one aspect, an IR spectrometer includes a light source adapted to illuminate a sample, a grating adapted to spectrally disperse a light that has illuminated the sample, a MEMS array adapted to be electrostatically actuated by a controller to control a diffraction of the light, a detector configured to detect the light, and a power source adapted to supply power to the light source and to the MEMS array, wherein the controller is adapted to control the MEMS array so as to manage a power consumption of the IR spectrometer. In one embodiment, the IR spectrometer includes a housing sized and arranged to house the light source, the grating, the MEMS array, the controller, the detector, to and the power source in a hand-held device.