Abstract:
A photocathode high-frequency electron-gun cavity apparatus of the present invention is provided with a high-frequency acceleration cavity (1), a photocathode (8, 15), a laser entering port (9), a high-frequency power input coupler port (10), and a high-frequency resonant tuner (16). Here, the apparatus adopts an ultra-small high-frequency accelerator cavity which contains a cavity cell formed only with a smooth and curved surface at an inner face thereof without having a sharp angle part for preventing discharging, obtaining higher strength of high-frequency electric field, and improving high-frequency resonance stability. Further, the photocathode is arranged at an end part of a half cell (5) of the high-frequency acceleration cavity for maximizing electric field strength at the photocathode face, perpendicular incidence of laser is ensured by arranging a laser entering port at a position facing to the photocathode behind an electron beam extraction port of the high-frequency acceleration cavity for maximizing quality of short-bunch photoelectrons, and a high-frequency power input coupler port is arranged at a side part of the cell of the high-frequency acceleration cavity for enhancing high-frequency electric field strength. According to the above, it is possible to provide a small photocathode high-frequency electron-gun cavity apparatus capable of generating a high-strength and high-quality electron beam.
Abstract:
A mesh electrode adhesion structure includes: a substrate (130), and an opening defined in the substrate; a mesh electrode (150) on the substrate, and a first combination groove (160) defined in the mesh electrode; and an adhesion layer (140) between the substrate and the mesh electrode. The mesh electrode includes: a mesh region corresponding to the opening defined in the substrate, and an adhesion region in which the first combination groove exposes the adhesion layer.
Abstract:
A field emission display (FED) and a fabrication method thereof are disclosed. A lower plate of the FED includes: a cathode electrode formed on the substrate; a diffusion blocking layer formed on the cathode electrode; a seed metal layer formed on the diffusion blocking layer; carbon nano-tubes (CNTs) grown as single crystals from the grains of the seed metal layer; a gate insulating layer formed on the substrate on which the cathode electrode, the diffusion blocking layer, and the seed metal layer are formed, in order to cover the CNTs; and a gate electrode formed on the gate insulating layer.
Abstract:
The invention relates to a pumped electron source (1) that comprises an ionisation chamber (4), an acceleration chamber (2) with an electrode (3) for extracting and accelerating primary ions and forming a secondary-electron beam, characterised in that said pumped electron source (1) comprises a power supply (11) adapted for applying to said electrode (3) a positive voltage for urging a primary plasma (17) outside the acceleration chamber (2), and a negative voltage pulse for extracting and accelerating the primary ions and forming a secondary-electron beam.
Abstract:
A structure comprising: a plate; an electron emissive element overlying the plate; a support region overlying the plate; and a getter region overlying at least part of the support region, a composite opening extending through the getter region and through the support region generally laterally where the electron-emissive element overlies the plate.
Abstract:
An electron emission device includes electron emission regions formed on a first substrate, a driving electrode for controlling emission of electrons emitted from the electron emission regions, and a focusing electrode for focusing the electrons and having an opening through which the electrons pass. A first insulating layer is disposed between the driving electrode and the focusing electrode. The focusing electrode and the insulating layer satisfy at least one of the following two conditions: 1.0 ≤ |Vf/t| ≤ 6.0; and 0.2 ≤ |Vf/Wh| ≤ 0.4, where Vf (V) indicates the voltage applied to the focusing electrode, t (µm) indicates the thickness of the insulating layer, and Wh (µm) indicates the width of the opening of the focusing electrode.