Abstract:
The present disclosure relates to thermoplastic electrostatic dissipative (ESD) composites. The disclosed composites comprise a thermoplastic resin phase and a plurality of intermediate modulus carbon fibers dispersed within the thermoplastic resin phase. Also disclosed herein are methods for the manufacture and/or use of the disclosed ESD composites as well as articles formed from such composites.
Abstract:
The present invention relates to a thermoset resin composition, and a prepreg and a laminate for a printed circuit board manufactured therefrom. The thermoset resin composition comprises the following components: a phosphorus-containing polyphenyl ether resin having low molecular weight, an epoxy resin, a cyanate resin and an accelerator. The prepreg manufactured using the resin composition comprises a base material and the thermoset resin composition adhered to the base material by impregnation and drying. The laminate for a printed circuit board manufactured using the resin composition comprises a plurality of laminated prepregs, a metal foil covering one or two faces of the laminated prepregs by pressing, with each prepreg comprising a base material and the thermoset resin composition adhered to the base material by impregnation and drying. The thermoset resin composition of the present invention has properties such as a low dielectric constant and a dielectric dissipation factor, high heat resistance, a high glass transition temperature, and flame retardancy, etc. The laminates for a printed circuit board manufactured using same have excellent metal foil peel strength, heat resistance and dielectric properties, and are suitable for high frequency and high speed electronic circuit boards.
Abstract:
Provided is a thermoplastic resin composition which is excellent in platability (appearance of plating), and keeps high reflectance even after thermal aging. A thermoplastic resin composition comprising: per (A) 100 parts by weight of a crystalline thermoplastic resin having a melting point, measured by differential scanning calorimetry (DSC) at a heating rate of 10° C./min, of 250° C. or above; (B) 10 to 80 parts by weight of a glass filler; (C) 1 to 30 parts by weight of a laser direct structuring additive having a reflectance at 450 nm of 25% or above; and (D) 20 to 150 parts by weight of titanium oxide.
Abstract:
Provided is a thermoplastic resin molded article excellent in bending strength, flexural modulus and Charpy impact strength, on which the plated layer may be formed in a successful manner. The thermoplastic resin composition for laser direct structuring comprising, per 100 parts by weight of the thermoplastic resin, 10 to 150 parts by weight of an inorganic fiber and 1 to 30 parts by weight of a laser direct structuring additive, the laser direct structuring additive containing at least one of copper, antimony and tin, and having a Mohs hardness 1.5 or more smaller than the Mohs hardness of the inorganic fiber.
Abstract:
Fibrous substrates containing polyetherimides and other synthetic fibers are disclosed, along with methods of preparing electrical insulation paper and articles comprising the fibrous substrates.
Abstract:
A printed circuit board includes; a thermoplastic reinforcement material having fibers secured by a thermoplastic polymer binder and having pores formed therein; a thermoplastic resin layer having the thermoplastic reinforcement material impregnated with a thermoplastic resin; and a circuit pattern formed over the thermoplastic resin layer, wherein the thermoplastic reinforcement material and the thermoplastic resin layer have a thickness ratio (thickness of the thermoplastic reinforcement material÷thickness of the thermoplastic resin layer) of 0.9 or higher.
Abstract:
A heat-conductive dielectric polymer material includes a thermosetting epoxy resin, a nonwoven fiber component, a curing agent and a heat-conductive filler. The thermosetting epoxy resin is selected from the group consisting of end-epoxy-function group epoxy resin, side chain epoxy function group epoxy resin, multi-functional epoxy resin or the mixture thereof. The thermosetting epoxy resin comprises 4%-60% by volume of the heat-conductive dielectric polymer material. The curing agent is configured to cure the thermosetting epoxy resin at a curing temperature. The heat-conductive filler comprises 40%-70% by volume of the heat-conductive dielectric polymer material. The nonwoven fiber component comprises 1%-35% by volume of the heat-conductive dielectric polymer material. The heat-conductive dielectric polymer material has a thermal conductivity greater than 0.5 W/mK.
Abstract:
A method of manufacturing a printed wiring board includes forming a first hole penetrating a base having conductivity, closing an opening of the first hole with a film, filling an insulating material into the first hole after closing the opening, removing the film after filling the insulating material, forming a plurality of second holes penetrating the insulating material, and forming a film having conductivity on an inner surface of each of the second holes to form a plurality of wirings penetrating the insulating material.
Abstract:
The invention relates to a specific printed circuit (7) comprising independent etched blocks (4) or segments in series of four such that, on a series circuit comprising five LEDs, the four blocks serve as the positioning and connection points for the welding of the pins of the LEDs, said pins being welded in an anode-to-cathode series, or the reverse depending on the direction of the current, i.e. eight electrodes in isolated blocks, such as to ensure that the connection is powered and the LEDs are fixed correctly in series of five. According to the invention, the square or rectangular blocks have a large surface (2) such that the successive holes do not tear the film of epoxy copper. In addition, said blocks are disposed along a path and a successive diagram (21) defines the symbol or pattern to be represented by the LEDs (12) which are disposed and aligned on the other decorated face of the epoxy. The incoming or outgoing bases, which supply the positive (20) or negative (3) power, or the opposite depending on the direction of the LEDs, can comprise the outgoing or incoming base that is common to other series, by means of suitable etching. The negative is always at the center of the pattern. The circuit is divided into three connection zones, A, B, C, and is powered by external contact springs. The invention is intended for the series powering of a longilineal distribution of five LEDs in series, or a multiple thereof.
Abstract:
A printed circuit board includes; a thermoplastic reinforcement material having fibers secured by a thermoplastic polymer binder and having pores formed therein; a thermoplastic resin layer having the thermoplastic reinforcement material impregnated with a thermoplastic resin; and a circuit pattern formed over the thermoplastic resin layer, wherein the thermoplastic reinforcement material and the thermoplastic resin layer have a thickness ratio (thickness of the thermoplastic reinforcement material÷thickness of the thermoplastic resin layer) of 0.9 or higher.