Abstract:
Disclosed are a touch panel and a method for manufacturing the same. The touch panel includes a substrate, a transparent electrode base provided on any one surface of the substrate and provided thereon with a transparent electrode, a first transparent electrode provided on any one surface of the transparent electrode base while extending in one direction, and a second transparent electrode provided on any one surface of the transparent electrode base while extending in a direction to cross the first transparent electrode. The method includes preparing a substrate and a transparent electrode base, forming a transparent electrode over the transparent electrode base, forming an electrode material over the transparent electrode base.
Abstract:
A PCB page blank includes a flexible substrate, a curable adhesive, a conductive layer, and a conductive layer support. The flexible substrate receives an opaque negative circuit pattern thereon. Portions of the curable adhesive not obscured by the circuit pattern may bond to portions of the conductive layer when exposed to light. The bonded portions of the conductive layer shear or tear from non-bonded portions of the conductive layer such that the bonded portions remain with the flexible substrate and the non-bonded portions remain with the conductive layer support when the flexible substrate and the conductive layer support are separated. The flexible substrate and the bonded portions of the conductive layer thus form a PCB prototype with the bonded portions of the conductive layer forming circuit traces of the circuit pattern.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.
Abstract:
Provided is a printed circuit board including a base substrate, first row pads, and second row pads. The base substrate has two sides, that can be adjacent, respectively extending in first and second directions. A plurality of pad group areas successively positioned along the first direction are defined on the base substrate. The first row pads are respectively disposed within the pad group areas and successively positioned along a third direction. The second row pads are respectively disposed within the pad group areas, successively positioned along the third direction, and spaced apart from the first row pads. Each of the second row pads is a predetermined distance from a corresponding one of the first row pads in the second direction.
Abstract:
A flexible printed circuit may include a flexible body portion and a flexible head end portion, where conductors and/or elongated cut outs may be formed in a pattern. The flexible body may include a proximal end and a distal end, wherein the proximal end is configured to be connected to a stationary object and the distal end is configured to be connected to a moving object that moves in relation to the stationary object. The head end of the flexible printed circuit may be located at the distal end of the flexible body. The head end may include a plurality of elongated cut-outs, and/or a plurality of electrical connection pads suspended from the flexible body by the plurality of elongated cutouts.
Abstract:
The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces at least one tack opening; wherein said polymer base layer, said metal traces and said polymer top layer are thermoformed in a three dimensional shape. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on said polymer base layer; patterning said metal to form metal traces; depositing a polymer top layer on said polymer base layer and said metal traces; preparing at least one tack opening; and heating said flexible circuit electrode array in a mold to form a three dimensional shape in said flexible circuit electrode array.