Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a lower sacrificial material used to form a lower cavity. The method further includes forming a cavity via connecting the lower cavity to an upper cavity. The cavity via is formed with a top view profile of rounded or chamfered edges. The method further includes forming an upper sacrificial material within and above the cavity via, which has a resultant surface based on the profile of the cavity via. The upper cavity is formed with a lid that is devoid of structures that would interfere with a MEMS beam, including: depositing a lid material on the resultant surface of the upper sacrificial material; and venting the upper sacrificial material to form the upper cavity such the lid material forms the lid which conforms with the resultant surface of the upper sacrificial material.
Abstract:
A structural film, typically of silicon, in MEMS or NEMS devices is fabricated by depositing the film in the presence of a gas other than nitrogen, and preferably argon as the carrier gas.
Abstract:
A micromechanical structure and a method of fabricating a micromechanical structure are provided. The micromechanical structure comprises a silicon (Si) based substrate; a micromechanical element formed directly on the substrate; and an undercut formed underneath a released portion of the micromechanical element; wherein the undercut is in the form of a recess formed in the Si based substrate.
Abstract:
A structural film, typically of silicon, in MEMS or NEMS devices is fabricated by depositing the film in the presence of a gas other than nitrogen, and preferably argon as the carrier gas.
Abstract:
A technique for manufacturing a micro-electro mechanical structure includes a number of steps. Initially, a cavity is formed into a first side of a handling wafer, with a sidewall of the cavity forming a first angle greater than about 54.7 degrees with respect to a first side of the handling wafer at an opening of the cavity. Then, a bulk etch is performed on the first side of the handling wafer to modify the sidewall of the cavity to a second angle greater than about 90 degrees, with respect to the first side of the handling wafer at the opening of the cavity. Next, a second side of a second wafer is bonded to the first side of the handling wafer.
Abstract:
Method and apparatus to obtain as-deposited polycrystalline and low-stress SiGe layers. These layers may be used in Micro Electro-Mechanical Systems (MEMS) devices or micromachined structures. Different parameters are analysed which effect the stress in a polycrystalline layer. The parameters include, without limitation: deposition temperature; concentration of semiconductors (e.g., the concentration of Silicon and Germanium in a SixGe1−x layer, with x being the concentration parameter); concentration of dopants (e.g., the concentration of Boron or Phosphorous); amount of pressure; and use of plasma. Depending on the particular environment in which the polycrystalline SiGe is grown, different values of parameters may be used.
Abstract:
A method of fabricating an infrared detector, a method of controlling the stress in a polycrystalline SiGE layer and an infrared detector device is disclosed. The method of fabricating includes the steps of forming a sacrificial layer on a substrate; patterning said sacrificial layer; establishing a layer consisting essentially of polycrystalline SiGe on said sacrificial layer; depositing an infrared absorber on said polycrystalline SiGe layer; and thereafter removing the sacrificial layer. The method of controlling the stress in a polycrystalline SiGe layer deposited on a substrate is based on varying the deposition pressure. The infrared detector device comprises an active area and an infrared absorber, wherein the active area comprises a polycrystalline SiGe layer, and is suspended above a substrate.
Abstract:
A device for use in a micro-electro-mechanical system (MEMS) optical device. The device includes a substrate having opposing first and second sides and a diffusion barrier layer formed over at least the first side. The device further includes a light reflective optical layer formed over the diffusion barrier layer on the first side of the substrate. The second side may desirably have a stress balancing layer located thereover.
Abstract:
A method of forming a thin film metallization layer having a predetermined residual stress and a predetermined sheet resistance and force measuring devices formed using the methods.
Abstract:
An air bridge type structure of a bridge shape which joins to a substrate or micro-structure is manufactured by forming an air bridge type structure on a first substrate and transferring the air bridge type structure to a second substrate and/or a micro-structure formed on the second substrate. A mold substrate, comprising a recessed portion provided on the surface of the mold substrate and a peeling layer formed on the recessed portion, is used for formation of the air bridge type structure. A micro-structure can be supported by the air bridge type structure, for example, a probe for detecting tunneling current or micro-force, supported by the air bridge type structure. Accordingly, electrical connection between structures and the substrate or between the structures one to another can be performed, even if there is undercutting underneath the structures. Film stress generated upon formation of air bridge type structures can be avoided, and increasing of productivity and lowering of costs can be simultaneously achieved.