Method of coating micro-electromechanical devices
    171.
    发明申请
    Method of coating micro-electromechanical devices 失效
    涂布微机电装置的方法

    公开(公告)号:US20040037956A1

    公开(公告)日:2004-02-26

    申请号:US10225846

    申请日:2002-08-22

    Inventor: Zhihao Yang

    Abstract: A method for coating a micro-electromechanical systems device with a silane coupling agent by a) mixing the silane coupling agent with a low volatile matrix material in a coating source material container; b) placing the micro-electromechanical systems device in a vacuum deposition chamber which in connection with the coating source material container; c) pumping the vacuum deposition chamber to a predetermined pressure; and maintaining the pressure of the vacuum deposition chamber for a period of time in order to chemically vapor deposit the silane coupling agent on the surface of the micro-electromechanical systems device

    Abstract translation: 一种通过以下步骤涂覆具有硅烷偶联剂的微机电系统装置的方法:a)将硅烷偶联剂与低挥发性基质材料混合在涂料源材料容器中; b)将微机电系统装置放置在与涂料源材料容器相连的真空沉积室中; c)将真空沉积室泵送至预定压力; 并且将真空沉积室的压力维持一段时间,以便在微机电系统装置的表面上化学气相沉积硅烷偶联剂

    Integrated method for release and passivation of MEMS structures
    172.
    发明申请
    Integrated method for release and passivation of MEMS structures 失效
    MEMS结构的释放和钝化的集成方法

    公开(公告)号:US20040033639A1

    公开(公告)日:2004-02-19

    申请号:US10435757

    申请日:2003-05-09

    Abstract: Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises treating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures which may be adjusted to be carried out in a either a single chamber processing system or a multi-chamber processing system.

    Abstract translation: 本文公开了一种改进疏水性自组装单层(SAM)涂层到MEMS结构表面的粘附性的方法,以防止粘结。 该方法包括用包含氧气和任选的氢气的源气体产生的等离子体处理MEMS结构的表面。 处理氧化表面,然后与氢气反应以在表面上形成键合的OH基团。 氢源可以作为等离子体源气体的一部分存在,使得在用等离子体处理表面期间产生结合的OH基团。 本文还公开了一种用于MEMS结构的释放和钝化的集成方法,其可以被调整为在单室处理系统或多室处理系统中进行。

    Integrated method for release and passivation of MEMS structures
    174.
    发明申请
    Integrated method for release and passivation of MEMS structures 失效
    MEMS结构的释放和钝化的集成方法

    公开(公告)号:US20030166342A1

    公开(公告)日:2003-09-04

    申请号:US10300970

    申请日:2002-11-20

    Abstract: Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises pretreating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures.

    Abstract translation: 本文公开了一种改进疏水性自组装单层(SAM)涂层到MEMS结构表面的粘附性的方法,以防止粘结。 该方法包括用包含氧气和任选的氢气的源气体产生的等离子体来预处理MEMS结构的表面。 处理氧化表面,然后与氢气反应以在表面上形成键合的OH基团。 氢源可以作为等离子体源气体的一部分存在,使得在用等离子体处理表面期间产生结合的OH基团。 本文还公开了一种用于MEMS结构的释放和钝化的集成方法。

    Methods of forming microstructure devices
    175.
    发明申请
    Methods of forming microstructure devices 失效
    形成微结构器件的方法

    公开(公告)号:US20020164879A1

    公开(公告)日:2002-11-07

    申请号:US09850923

    申请日:2001-05-07

    Abstract: The invention includes methods of forming microstructure devices. In an exemplary method, a substrate is provided which includes a first material and a second material. At least one of the first and second materials is exposed to vapor-phase alkylsilane-containing molecules to form a coating over the at least one of the first and second materials.

    Abstract translation: 本发明包括形成微结构器件的方法。 在示例性方法中,提供了包括第一材料和第二材料的基底。 将第一和第二材料中的至少一种暴露于含气相烷基硅烷的分子,以在第一和第二材料中的至少一种材料上形成涂层。

    Tungsten coating for improved wear resistance and reliability of microelectromechanical devices
    176.
    发明授权
    Tungsten coating for improved wear resistance and reliability of microelectromechanical devices 有权
    钨涂层,用于改善微机电装置的耐磨性和可靠性

    公开(公告)号:US06290859B1

    公开(公告)日:2001-09-18

    申请号:US09439103

    申请日:1999-11-12

    Abstract: A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 ° C. in the presence of gaseous nitrogen trifluoride (NF3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF6) at an elevated temperature, preferably about 450° C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.

    Abstract translation: 公开了一种方法,其中可以在微机电(MEM)装置内的暴露的半导体表面(例如硅,锗或碳化硅)上形成5-50纳米厚的共形钨涂层,以改善耐磨性和可靠性。 在清洁半导体表面之后形成钨涂层,以从表面除去任何有机材料和氧化物膜。 通过在含有气态三氟化氮(NF 3)的存在下,将含有MEM装置的基板加热至200-600℃的温度,进行最终的原位清洗步骤。 钨涂层然后可以通过半导体表面和六氟化钨(WF6)之间的化学反应在升高的温度,优选约450℃下形成。钨沉积工艺是自限制的,并且覆盖所有暴露的半导体表面,包括紧密的表面 联系。 本发明可以应用于许多不同类型的MEM装置,包括微型雷达,微镜和微型引擎。 此外,本发明的钨耐磨涂层可用于提高MEM装置内的一个或多个半导体表面的硬度,耐磨性,导电性,光反射率和化学惰性。

    形成微結構元件之方法
    178.
    发明专利
    形成微結構元件之方法 失效
    形成微结构组件之方法

    公开(公告)号:TW546833B

    公开(公告)日:2003-08-11

    申请号:TW091109517

    申请日:2002-05-07

    IPC: H01L

    Abstract: 本發明包括形成微結構元件的方法,在一實施態樣中,先提供一基材,該基材包括第一材質及第二材質。接著將第一材質或第二材質曝露於氣相態之烷基矽烷分子中,以於第一材質或第二材質上形成一塗層。

    Abstract in simplified Chinese: 本发明包括形成微结构组件的方法,在一实施态样中,先提供一基材,该基材包括第一材质及第二材质。接着将第一材质或第二材质曝露于气相态之烷基硅烷分子中,以于第一材质或第二材质上形成一涂层。

Patent Agency Ranking