Abstract:
A MEMS sensor includes a bond portion in which a metal structure in a device substrate and a metal laminate are eutectically bonded. The bond portion bonds the device substrate and a lid substrate. The metal laminate is located on a main surface of the lid substrate and facing an exposed portion in the metal structure. The metal laminate includes a first metal and a second metal different from the first metal.
Abstract:
A method for fabricating packaged semiconductor devices (100) with an open cavity (110a) in panel format; placing (process 201) on an adhesive carrier tape a panel-sized grid of metallic pieces having a flat pad (230) and symmetrically placed vertical pillars (231); attaching (process 202) semiconductor chips (101) with sensor systems face-down onto the tape; laminating (process 203) and thinning (process 204) low CTE insulating material (234) to fill gaps between chips and grid; turning over (process 205) assembly to remove tape; plasma-cleaning assembly front side, sputtering and patterning (process 206) uniform metal layer across assembly and optionally plating (process 209) metal layer to form rerouting traces and extended contact pads for assembly; laminating (process 212) insulating stiffener across panel; opening (process 213) cavities in stiffener to access the sensor system; and singulating (process 214) packaged devices by cutting metallic pieces.
Abstract:
A process for fabricating a suspended microelectromechanical system (MEMS) structure comprising epitaxial semiconductor functional layers that are partially or completely suspended over a substrate. A sacrificial release layer and a functional device layer are formed on a substrate. The functional device layer is etched to form windows in the functional device layer defining an outline of a suspended MEMS device to be formed from the functional device layer. The sacrificial release layer is then etched with a selective release etchant to remove the sacrificial release layer underneath the functional layer in the area defined by the windows to form the suspended MEMS structure.
Abstract:
A process for fabricating a suspended microelectromechanical system (MEMS) structure comprising epitaxial semiconductor functional layers that are partially or completely suspended over a substrate. A sacrificial release layer and a functional device layer are formed on a substrate. The functional device layer is etched to form windows in the functional device layer defining an outline of a suspended MEMS device to be formed from the functional device layer. The sacrificial release layer is then etched with a selective release etchant to remove the sacrificial release layer underneath the functional layer in the area defined by the windows to form the suspended MEMS structure.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
A method for fabricating at least one aperture (60, 64) with shaped sidewalls in a layer (52) of a light sensitive photopolymer (54), which method comprises: (i) providing the layer (52) of the photopolymer (54); (ii) providing a mask (56); (iii) exposing the photopolymer (54) to light (58); (iv) utilising the mask (56) to control the intensity of the light (58) falling on the photopolymer (54); and (v) forming the mask (56) such that its control of the intensity of the light (58) falling on the photopolymer (54) causes the aperture (60, 64) to have the shaped sidewalls.
Abstract:
In a method for synthesizing polymeric microstructures, a monomer stream is flowed, at a selected flow rate, through a fluidic channel. At least one shaped pulse of illumination is projected to the monomer stream, defining in the monomer stream a shape of at least one microstructure corresponding to the illumination pulse shape while polymerizing that microstructure shape in the monomer stream by the illumination pulse. An article of manufacture includes a non-spheroidal polymeric microstructure that has a plurality of distinct material regions.
Abstract:
In a method for imaging a solid state substrate, a vapor is condensed to an amorphous solid water condensate layer on a surface of a solid state substrate. Then an image of at least a portion of the substrate surface is produced by scanning an electron beam along the substrate surface through the water condensate layer. The water condensate layer integrity is maintained during electron beam scanning to prevent electron-beam contamination from reaching the substrate during electron beam scanning. Then one or more regions of the layer can be locally removed by directing an electron beam at the regions. A material layer can be deposited on top of the water condensate layer and any substrate surface exposed at the one or more regions, and the water condensate layer and regions of the material layer on top of the layer can be removed, leaving a patterned material layer on the substrate.
Abstract:
A MEMS device, a method of making a MEMS device and a system of a MEMS device are shown. In one embodiment, a MEMS device includes a first polymer layer, a MEMS substrate disposed on the first polymer layer and a MEMS structure supported by the MEMS substrate. The MEMS device further includes a first opening disposed in the MEMS substrate and a second opening disposed in the first polymer layer.
Abstract:
A method to fabricate an imprint mould in three dimensions including at least: a) forming at least one trench, of width W and depth h, in a substrate, thereby forming three surfaces including, a bottom of the at least one trench, sidewalls of the at least one trench, and a remaining surface of the substrate, called top of the substrate; b) forming alternate layers in the at least one trench, each having at least one portion perpendicular to the substrate, in a first material and in a second material which can be selectively etched relative to the first material; and c) selectively etching said portions of the layers perpendicular to the substrate.