Abstract:
A thin film transistor array board is provided. A thin film transistor array board according to an embodiment of the present invention includes a substrate, a gate electrode which is located on the substrate, a gate insulating layer which is located on the gate electrode, a semiconductor layer which is located on the gate insulating layer and includes a channel region, a source electrode and a drain electrode which are located on the semiconductor layer and face each other, and a protection layer which covers the source electrode, the drain electrode, and the semiconductor layer. The semiconductor layer includes a first part which is overlapped with the source electrode and the gate electrode, and a second part which is overlapped with the drain electrode and the gate electrode. The first part of the semiconductor layer includes a hill part which protrudes from the first part.
Abstract:
A method for extracting state density in a band gap of an amorpous oxide semiconductor thin film transistor by using an optical differential ideality coefficient and a device thereof are provided. The method for extracting state density in a band gap of an amorpous oxide semiconductor thin film transistor includes a step of measuring a darkroom drain current from a darkroom according to a gate voltage and measuring a light reaction drain current according to the gate voltage by emitting light of a light source, a step of calculating a light reaction ideality coefficient and a darkroom ideality coefficient by using the light reaction drain current and the darkroom drain current, and a step of extracting the state density in the band gap of the thin film transistor based on the differentiation of the light reaction ideality coefficient and the darkroom ideality coefficient. The step of extracting the state density extracts genuine state density by de-embedding capacitance formed by free electrons. [Reference numerals] (AA) Start; (BB) End; (S310) Measure a darkroom drain current according to a gate voltage in a darkroom; (S320) Measure a light reaction drain current according to the gate voltage by emitting light of a light source; (S330) Calculate a darkroom ideality coefficient by using the darkroom drain current; (S340) Calculate a light reaction ideality coefficient by using the light reaction drain current; (S350) Calculate light reaction capacitance based on the differentiation of the light reaction ideality coefficient and the darkroom ideality coefficient; (S360) Extract state density from a band gap based on the light reaction capacitance
Abstract:
본 발명은 열 효과를 이용한 마이크로 역학 진동자 기반의 압력센서 및 이를 이용한 압력 측정 방법에 관한 것으로서, 특히 더욱 상세하게는 마이크로 크기의 역학 진동자의 경우 외부 요인에 의해 동역학적 특성의 변화가 크게 일어남은 물론 광열효과와 가스분자에 의한 열의 소산 정도가 압력에 따라 차이가 나기 때문에 이 원리를 이용하여 마이크로미터의 크기를 갖는 초소형 압력센서를 구현할 수 있고, 역학 진동자가 양팔보 형태의 구조로 제작됨으로써, 양팔보의 온도를 증가시켜 공진주파수를 감소시켜 놓은 상태에서 압력을 증가시킴에 따라 열이 소산되고 평형점에 도달하는 것을 이용하여 빠르고 정밀한 압력 센서로 응용이 가능하며, 레이저 파워의 조절을 통해, 양팔보의 온도를 조절하여 열이 평형에 도달하는 점을 이용하므로 넓은 범위의 압력을 측정할 수 있고, 진동자를 포함하는 압력센서의 크기 또한 마이크로 정도의 크기이므로 lap-on-chip의 집적도를 높이는데 유용하게 사용할 수 있으며, 서로 다른 열팽창 상수를 지닌 적층 구조의 마이크로 역학 진동자를 이용하여 진동자 상에 레이저를 입사시켜 기체 분자에 의해 나타나는 열 소산에 따른 마이크로 진동자의 공진 주파수 변화를 추적하여 압력을 측정할 수 있다.
Abstract:
비정질 산화물 반도체 박막 트랜지스터의 커패시턴스 모델링 방법 및 그 장치가 개시된다. 본 발명의 일 실시예에 따른 비정질 산화물 반도체 박막 트랜지스터의 커패시턴스 모델링 방법은 밴드갭 내 상태밀도(subgap DOS)에 속박되어 있는 전하밀도를 계산하는 단계; 게이트 전압의 기 설정된 범위에 따라 채널 내에 존재하는 전하밀도를 주요(dominant) 캐리어 성분으로 근사화하는 단계; 상기 근사화된 상기 전하밀도에 기초하여 단위면적당 총 전하를 계산하는 단계; 및 상기 밴드갭 내 상태밀도, 상기 계산된 상기 단위면적당 총 전하 및 기 입력된 복수의 파라미터들에 대한 정보에 기초하여 커패시턴스 모델을 생성하는 단계를 포함함으로써, 비정질 산화물 반도체 TFT 기반의 해석적인 커패시턴스 모델을 제공하고, 이를 통해 커패시턴스 계산 속도를 향상시켜 시뮬레이션 모델로 적용할 수 있다.
Abstract:
PURPOSE: A capacitance modeling method of an amorphous oxide semiconductor TFT and an apparatus thereof are provided to improve the calculating speed of the capacitance by indicating a capacitance model as an analytical formula. CONSTITUTION: An input unit(1010) receives information about a parameter. An approximating unit(1030) approximates electric charge density as a main carrier component according to the setting range of a gate voltage. A calculation unit(1020) calculates total charge by unit surface based on the approximated charge density. A capacitance model generator(1040) generates a capacitance model based on parameter information. [Reference numerals] (1010) Input unit; (1020) Calculation unit; (1030) Approximating unit; (1040) Capacitance model generator
Abstract:
PURPOSE: A current modeling method and apparatus of an amorphous oxide semiconductor thin film transistor are provided to improve a current calculation speed by supplying an analytical current model. CONSTITUTION: Charge density which is restricted in state density within a band gap is calculated(S310). The charge density is approximated to a major carrier component in case voltage between gate-sources is less than threshold voltage and is over than the threshold voltage(S320). Total electric charge per unit area is calculated(S330). The mobility of a channel which depends on gate voltage is calculated(S340). A first current model and a second current model are created(S350). A total current model is created using the first current model and the second current model(S360).
Abstract:
PURPOSE: A method for manufacturing an SB DRAM cell transistor without a capacitor is provided to reduce a defect caused by inconsistency in gratings by alternately performing heterogeneous bonding of a silicon layer and a silicon germanium layer via a molecular beam epitaxy growth. CONSTITUTION: A wafer is etched by using a Damascene process(S200). The poly-crystal silicon is evaporated and a lower gate is formed(S300). A polycrystalline silicon layer is flattened through the chemical mechanical polishing process(S400). The silicon dioxide is evaporated, the silicon dioxide wall is made and the silicon dioxide wall is etched for channel forming(S500). The silicon channel layer crystallized between the silicon dioxide walls is evaporated and engraved through the chemical mechanical polishing(S600). The silicon channel layer is etched in order to make the rule grating(S700).