Abstract:
A transistor using deformation caused by piezoelectric effect of a carbon nano tube is provided to obtain a transistor of a new concept using deformation of a carbon nano tube caused by deformation of a piezoelectric device by using a device of a several nano meter using a carbon nano tube. A piezoelectric device(6) is disposed at one side of a carbon nano tube(5) so that the carbon nano tube is deformed by contraction or expansion of the piezoelectric device. A switching process is performed by a difference of specific resistance of the carbon nano tube generated by a deformation quantity of the carbon nano tube caused by the contraction or expansion of the piezoelectric device. The piezoelectric device can be a shape memory piezoelectric actuator.
Abstract:
본 발명은 균일하고 잘 정렬된 발광물질로 이루어진 나노 구조물을 제조하여 이를 발광소자에 적용함으로써, CCFL이나 LED와 같은 종래의 후면광 유닛에 비해, 두께를 줄이고 소비전력을 낮추며 동시에 광원의 균일성을 우수하게 할 수 있는 광원용 구조물과 이를 이용한 광원의 제조방법에 관한 것이다. 본 발명에 따른 광원용 구조물의 제조방법은, 이중공중합체(DBC)로 나노패턴을 형성한 후, 이를 전극으로 사용하는 금속층에 전사하여, 금속층에 형성된 나노패턴을 마스크로 하여 발광물질의 나노구조를 형성함으로써, 종래에 비해 우수한 광원을 제공할 수 있도록 하는 것을 특징으로 한다. 후면광, 디스플레이, ZnO
Abstract:
PURPOSE: A method for doping a zinc oxide is provided to improve the electrical conductivity by increasing the concentration of a carrier while the mobility of the carrier is maintained. CONSTITUTION: A zinc oxide forming part(10), which includes a first bubbler, a first inert gas tank, and a first mask flow controller(13), forms a transparent conductive zinc oxide thin film. A doping part(20) is arranged to be symmetric to the zinc oxide forming part. With respect to the transparent conductive zinc oxide thin film, one or more elements from the IIIA family is doped with the zinc of the zinc oxide and one or more elements from the VIIA family is doped with the oxygen of the zinc oxide.
Abstract:
본 발명은 고유전율 박막에 주입되는 질소의 위치와 양을 조절함으로써 고유전율 박막의 재현성과 열화에 대한 저항성을 높인 것으로, 특히 계면을 제외한 부분에 대한 질소처리와 질소처리시의 함량의 조절을 통해 박막의 신뢰성을 최적화시킨 것을 특징으로 한다. 본 발명은 MOSFET, 메모리 소자, TFT, 캐패시터 등에 모두 적용될 수 있으며 박막의 신뢰성과 계면특성을 향상시킬 수 있다. 고유전율 박막, 신뢰성
Abstract:
PURPOSE: A manufacturing method of the sensor structure of using the nano wire arranged with the parallel arranged nano wire and sensor element manufactured thereby is proceed the manufacture and queue of the nano wire through the single process by using terrace. The nano wire structure having uniform-size and interval the process is simplified can be obtained. CONSTITUTION: It cuts so that the mono crystal substrate. Substrate is the thermal process and terrace is formed. The material forming the nano wire in the substrate in which terrace is formed is evaporated and the nano wire is formed in the edge of terrace. At this time, the shadow mask is arranged at the center of the interval of substrate and target. The production of the nano dot is prevented and the thickness of the nano wire is controlled.
Abstract:
PURPOSE: A method for manufacturing a metal nano structure is provided to accurately control length of the nano structure through growth rate regulation. CONSTITUTION: A method for manufacturing a metal nano structure comprises: a step of adding a metal precursor to heated semiconductor substrate to adsorb on the semiconductor substrate; a step of inputting purging gas to remove metal precursor which is not adsorbed; a step of inputting reaction gas with the metal precursor to reduce metal; and a step of inputting purging gas to remove reaction gas.
Abstract:
본 발명은 플라스마 원자층 박막 증착 방법(plasma-enhanced atomic layer deposition, PE-ALD)을 사용하여 반도체 소자의 금속 실리사이드(metal silicide) 콘택트를 열처리 없이 직접 형성하는 방법을 제공한다. 본 발명에 따르면, 자연 산화막(native oxide)을 제거한 반도체 기판 위에, 금속 전구체(metal precursor)와 암모니아 플라스마를 반응물로 사용하는 공정을 기본으로 사용하고, 실리콘 전구체로서 실란(SiH 4 ) 가스를 부가적으로 첨부시켜 금속 실리사이드 박막을 형성시킨다. 본 발명에 따른 방법은 기존의 공정과 다르게 열처리 공정을 배제한 증착 방법이므로, 실리사이드 형성시에 실리콘 기판 소비 문제를 근본적으로 해결할 수 있을 뿐 아니라, PE-ALD 공정의 장점인 높은 단차 피복성(step coverage)의 장점을 활용할 수 있어, 향후 나노스케일 소자 제작시에 큰 장점을 지닌 공정으로 사용될 수 있다. 원자층 박막 증착 방법, 실리사이드, 반도체 소자 전극, 암모니아 플라스마
Abstract:
A phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition is provided to improve device character and convenience of device fabrication by selectively changing phase between ruthenium layers or ruthenium oxide thin films. A phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition comprises following steps. The ruthenium precursor vaporized on a heated substrate is injected into a reaction chamber with the argon gas for 2 seconds. A bubbler filled with the precursor is x with is heated at 65°C. The temperature of a feeding line is maintained at 10 ~ 15°C temperature higher than the bubbler. The flow rate of the argon gas is maintained as 20 sccm. The argon purging gas of 50 sccm is injected into the chamber for 2 seconds. The oxygen gas of 10 sccm is injected into the chamber for 2 seconds. The argon purging gas of 50 sccm is injected into the camber for 2 seconds. The precursor of the ruthenium is the Ru2. The substrate temperature is maintained at 300±25°C when depositing the ruthenium metal thin film.