Abstract:
A glitch duration threshold is determined based on an allowable dose uniformity, a number of passes of a workpiece through an ion beam, a translation velocity, and a beam size. A beam dropout checking routine repeatedly measures beam current during implantation. A beam dropout counter is reset each time beam current is sufficient. On a first observation of beam dropout, a counter is incremented and a position of the workpiece is recorded. On each succeeding measurement, the counter is incremented if beam dropout continues, or reset if beam is sufficient. Thus, the counter indicates a length of each dropout in a unit associated with the measurement interval. The implant routine stops only when the counter exceeds the glitch duration threshold and a repair routine is performed, comprising recalculating the glitch duration threshold based on one fewer translations of the workpiece through the beam, and performing the implant routine starting at the stored position.
Abstract:
A method and apparatus is provided for improving implant uniformity of an ion beam experiencing pressure increase along the beam line. The method comprises generating a main scan waveform that moves an ion beam at a substantially constant velocity across a workpiece. A compensation waveform (e.g., quadratic waveform), having a fixed height and waveform, is also generated and mixed with the main scan waveform (e.g., through a variable mixer) to form a beam scanning waveform. The mixture ratio may be adjusted by an instantaneous vacuum pressure signal, which can be performed at much higher speed and ease than continuously modifying scan waveform. The mixture provides a beam scanning waveform comprising a non-constant slope that changes an ion beam's velocity as it moves across a workpiece. Therefore, the resultant beam scanning waveform, with a non-constant slope, is able to account for pressure non-uniformities in dose along the fast scan direction.
Abstract:
An ion implantation system has an ion source configured to form an ion beam. A mass analyzer mass analyzes the ion beam, a scanning element scans the ion beam in a horizontal direction and a parallelizing lens translates the fanned-out scanned beam into parallel shifting scanning ion beam. For applications needing not only a mean incident angle, but highly-aligned ion incident angles and a tight angular distribution, a slit apparatus is positioned at horizontal and/or vertical front focal points of the parallelizing lens. Minimum horizontal and/or vertical angular distributions of the ion beam on the workpiece are attained by controlling a beam focusing lens upstream of the scanning element for the best beam transmission through the slit system.
Abstract:
An ion implantation system (100) has a source that generates ions from a beam species to form an ion beam, and a mass analyzer mass analyzes the ion beam. An accelerator receives the ion beam having ions at a first charge state and exits the ion beam having ions at a second positive charge state. The accelerator has a charge stripper, a gas source, and a plurality of accelerator stages. The charge stripper converts the ions from the first charge state to the second charge state, The gas source provides a high molecular weight gas, such as hexafluoride, to the charge stripper, and the plurality of accelerator stages respectively accelerate the ions. An end station supports a workpiece to be implanted with ions at the second charge state.
Abstract:
An ion implantation system measurement system may have a scan arm (166) that rotates about an axis (184) and a workpiece support (168) to translate a workpiece through the ion beam (112). A first measurement component (162) may be downstream of the scan arm and provides a first signal from the ion beam. A second measurement component (164) with a mask (190) and a blocking plate (202) may be coupled (182) to the scan arm to provide a second signal from the ion beam with the rotation of the scan arm; wherein the mask permits varying amounts of the ion radiation from the ion beam to enter a Faraday cup (200) based on an angular orientation between the mask and the ion beam; and the blocking plate selectively blocks the ion beam to the Faraday cup based on the rotation of the scan arm. A controller is configured to determining a size of the ion beam and a relative orientation between the ion beam and the workpiece based, at least in part, on the one or more signals from the measurement component(s).
Abstract:
An ion implantation system is provided having an ion implantation apparatus configured to provide a spot ion beam having a beam density to a workpiece, wherein the workpiece has a crystalline structure associated therewith. A scanning system iteratively scans one or more of the spot ion beam and workpiece with respect to one another along one or more axes. A controller is also provided and configured to establish a predetermined localized temperature of the workpiece as a predetermined location on the workpiece is exposed to the spot ion beam. A predetermined localized disorder of the crystalline structure of the workpiece is thereby achieved at the predetermined location, wherein the controller is configured to control one or more of the beam density of the spot ion beam and a duty cycle associated with the scanning system to establish the localized temperature of the workpiece at the predetermined location on the workpiece.
Abstract:
An ion beam uniformity control system, wherein the uniformity control system comprising a differential pumping chamber (422, 216) that encloses an array of individually controlled gas jets (402, 506), wherein the gas pressure of the individually controlled gas jets are powered by a controller to change the fraction of charge exchanged ions, and wherein the charge exchange reactions between the gas and ions change the fraction of the ions with original charge state of a broad ion beam (110), wherein the charge exchanged portion of the broad ion beam is removed utilizing an deflector (114) that generates a magnetic field, a Faraday cup profiler for measuring the broad ion beam profile; and adjusting the individually controlled gas jets based upon feedback provided to the controller to obtain the desired broad ion beam.