Abstract:
A flat panel display (300) having a faceplate structure (320), a backplate structure (330), a focusing structure (333a), and a plurality of spacers (340). The backplate structure includes an electron emitting structure (332) which faces the faceplate structure. The focusing structure has a first surface which is located on the electron emitting structure, and a second surface which extends away from the electron emitting structure. The electrical end of the combination of the focusing structure and the electron emitting structure is located at an imaginary plane located intermediate the first and second surfaces of the focusing structure. The spacers are located between the focusing structure and the light emitting structure. Each spacer is located within a corresponding groove in the focusing structure such that the electrical end of each spacer is located coincident with the electrical end of the combination of the focusing structure and the electron emitting structure.
Abstract:
A cathode structure (200, 203, 204) suitable for a flat panel display is provided with coated emitters (229, 239, 230). The emitters are formed with material, typically nickel, capable of growing to a high aspect ration. These emitters are then coated with carbon containing material (240, 241) for improving the chemical robustness and reducing the work function. One coating process is a DC plasma deposition process in which acetylene is pumped through a DC plasma reactor (301, 305, 313, and 315) to create a DC plasma for coating the cathode structure. An alternative coating process is to electrically deposit raw carbon-based material onto the surface of the emitters, and subsequently reduce the raw carbon-based material to the carbon containing material. Work function of coated emitters is typically reduced by about 0.8 to 1.0 eV.
Abstract:
A method of removing contaminant particles in newly fabricated filed emission displays. Contaminant particles are removed by a conditioning process which includes the steps of: a)driving an anode (20) of a field emission display (FED) to a predetermined voltage; b) slowly increasing an emission current of the FED after the anode has reached the predetermined voltage; and c) providing an ion-trapping device for catching the ions and particles knocked off, or otherwise released, by emitted electrons (40). By driving the anode to the predetermined voltage and by slowly increasing the emission current of the FED, contaminant particles are effectively removed without damaging the FED. A method of operating FEDs is also provided to prevent gate-to-emitter current during turn-on and turn-off, which comprises the steps of: a) enabling the anode display screen (20); and b) enabling the electron-emitters (40) after the anode display screen is enabled. By allowing sufficient time for the anode display screen to reach a predetermined voltage before the emitter is enabled, the emitted electrons (40) will be attracted to the anode (20).
Abstract:
A field emission display (FED) having a correction system with a correction coefficient derived from emission current is presented. Within one embodiment in accordance with the present invention, a field emission display has an anode at the faceplate and a focus structure. The anode potential is held at ground while the focus structure potential is held between, but is not limited to, 40 and 50 volts. The current flowing to the focus structure is measured and used as the basis for the correction coefficient for the field emission display.
Abstract:
A voltage-adjustment section (20) of an electronic device converts an input control voltage (V1) into an output control voltage (V0) in such a way that a collector current (ICP) form with electrons emitted from an emitter (EP) of an emission/collection cell (26), or triode, varies in a desired, typically linear, manner with the input control voltage. The triode further includes a collector (CP) that carries the collector current and a gate electrode (GP) that regulates the collector current as a function of the output control voltage. Control of the collector current so as to achieve the desired current/voltage relationship is achieved with an analog control loop containing the triode and an amplifier (28) coupled between the triode's collector and gate electrode. The triode thus typically has a linear gamma characteristic relative to the input control voltage. The voltage-adjustment section is suitable for use in a display device such as a flat-panel display.
Abstract:
A first embodiment (Figs. 29A-29H) comprises a multilayer electrode (2906) for a panel display device and a method for forming a nultilayer electrode (2906) for a flat panel display device. The multilayer electrode (2096) is formed by depositing a metal alloy layer (2902). After the deposition of the metal alloy layer (2902), a protective layer (2904) is deposited above the metal alloy layer (2902) to form a multilayer stack (2906). The multilayer stack (2906) is subjected to a cleansing process to remove contaminants. Subsequently, the multilayer stack (2906) is etched to form the multilayer electrode (2906) for the flat panel display device. Another embodiment (Figs. 30-311) comprises a method of forming a multilayer stack (3106) is formed by depositing a first metal alloy layer (3102) above the substrate (3100). After the deposition of te metal alloy layer (3102), a barrier layer (3103) is formed above the first metal alloy layer (3102). The barrier layer (3103) is adapted to prevent the formation of an intermetallic compound within the first metal alloy layer (3102). Subsequently, a second metal alloy layer (3104) is deposited above the barrier layer (3103). The barrier layer (3103) prevents the formation of the intermetallic compound within the second metal alloy layer (3104).
Abstract:
The intensity at which electrons emitted by a first plate structure (10) in a flat-panel display strike a second plate structure (12) for causing it to emit light is controlled so as to reduce image degradation that could otherwise arise from undesired electron-trajectory changes caused by effects such as the presence of a spacer system (14) between the plate structures. An electron-emissive region (20) in the first plate structure typically contains multiple laterally separated electron-emissive portions (201 and 202) for selectively emitting electrons. An electron-focusing system in the first plate structure has corresponding focus openings (40P1 and 40P2) through which electrons emitted by the electron-emissive portions respectively pass. Upon being struck by the so-emitted electrons, a light-emissive region (22) in the second plate structure emits light to produce at least part of a dot of the display's image.
Abstract:
A method and apparatus to provide performance adjustments for FEDs during operation are provided. More specifically, the present invention provides two circuit embodiments for compensating for temperature induced brightness variations of the panel display. In a closed loop embodiment, a sample display circuit (501) that is substantially similar to a FED (300) being adjusted is used to generate a performance indicator signal which is compared against a reference signal to determine a difference signal. The difference signal is then used to adjust the operation performance of the FED as well as the sample display circuit. In an opened loop embodiment, a current source (609) generates a reference current across a sample resistor (603) which is made from the same material as the resistor layer (111) inside the FED's cathode (107). The voltage across the sample resistor is compared against a reference signal to determine a difference signal. The difference signal is then used to increase or decrease the brightness of the panel display, as needed, to compensate for temperature induced variations or other types of environment induced variations (e.g., humidity, aging, mild voltage drift that creates undesirable current drift, etc.) thereof.
Abstract:
A field emission display (FED) having a correction system with a correction coefficient derived from emission current is presented. Within one embodiment in accordance with the present invention, a field emission display has an anode at the faceplate and a focus structure. The anode potential is held at ground while the focus structure potential is held between, but is not limited to, 40 and 50 volts. The current flowing to the focus structure is measured and used as the basis for the correction coefficient for the field emission display.
Abstract:
In a field emission display (FED) device comprising: rows and columns of emitters; and an anode electrode, a method of measuring display attributes of said FED device comprising the steps of: a) in a scan fashion, individually driving each row and measuring the current drawn by each row, wherein a settling time is allowed after each row is driven; b) measuring a background current level during a vertical blanking interval; c) correcting current measurements taken during said step a) by said background current level to yield corrected current measurements; d) averaging multiple corrected current measurements taken over multiple display frames to produce averaged corrected current values for all rows of said FED device; and e) generating a memory resident correction table based on said averaged corrected current values.