Abstract:
The present invention relates to a method for fabricating a semiconductor device with a last level copper-to-C4 connection that is essentially free of aluminum. Specifically, the last level copper-to-C4 connection comprises an interfacial cap structure (30) containing CoWP, NiMoP, NiMoB, NiReP, NiWP, and combinations thereof. Preferably, the interfacial cap structure comprises at least one CoWP layer. Such a CoWP layer can be readily formed over a last level copper interconnect (22) by a selective electroless plating process.
Abstract:
A crack stop (28) for low K dielectric materials of an integrated circuit (IC) formed on an IC chip using metal interconnects which do not form a self-passivating oxide layer, such as copper or silver interconnects, in a low-K dielectric material to prevent damage to the active area of the IC chip caused by chipping and cracking formed along peripheral edges of the IC chip during a dicing operation. A moisture barrier or edge seal (12) is formed as a metal stack positioned along the outer peripheral edges of the active area of the IC chip. The crack stop is formed by at least one trench or groove positioned outside of the moisture barrier/edge seal on the outer periphery of the IC chip.
Abstract:
Ein topographisches Merkmal (305) ist in unmittelbarer Nähe zu einer leitfähigen Bond-Kontaktstelle (235) ausgebildet, die dazu verwendet wird, einen Lötkontakthügel (160) mit einem Halbleiter-Chip (140) zu verbinden. Das topographische Merkmal (305) ist durch einen Zwischenraum (310) von der leitfähigen Bond-Kontaktstelle (235) getrennt. Bei einer Ausführungsform ist das topographische Merkmal (305) an einer Stelle ausgebildet, die sich etwas jenseits der äußeren Begrenzung des Lötkontakthügels (160) befindet, wobei eine Kante des Kontakthügels (160) vertikal so ausgerichtet ist, dass sie mit dem Zwischenraum (310) zusammenfällt, der die leitfähige Bond-Kontaktstelle (235) von dem topographischen Merkmal (305) trennt. Das topographische Merkmal (305) stellt eine Erhöhung der Dicke einer nichtleitfähigen Schicht (240), die über dem Halbleiter-Chip (140) und der leitfähigen Bond-Kontaktstelle (235) angeordnet ist, und eine Verspannungspufferung bereit.
Abstract:
A plasma comprised of a fluorinated gas, an oxidant, and up to 15%-20% chlorofluorocarbon gas etches non-insulating materials such as tungsten and silicon at very high etch rates while providing enhanced etch rate ratios to photoresist and insulators.
Abstract:
A process of patterning a conductive layer on a substrate avoiding webbing yet permitting high density patterning places two layers between the resist and the metal. The first layer is an antireflective coating such as titanium nitride applied to the metal. The second layer is a barrier comprising silicon such as sputtered silicon or SiO2. The barrier layer may also be a thin coating of spin-on glass. The barrier layer prevents interaction between the TiN and acid groups which are generated during exposure of the resist. With this structure in place the resist is applied, exposed and developed.
Abstract:
A process of patterning a conductive layer on a substrate avoiding webbing yet permitting high density patterning places two layers between the resist and the metal. The first layer is an antireflective coating such as titanium nitride applied to the metal. The second layer is a barrier comprising silicon such as sputtered silicon or SiO2. The barrier layer may also be a thin coating of spin-on glass. The barrier layer prevents interaction between the TiN and acid groups which are generated during exposure of the resist. With this structure in place the resist is applied, exposed and developed.
Abstract:
A plasma comprised of a fluorinated gas, an oxidant, and up to 15%-20% chlorofluorocarbon gas etches non-insulating materials such as tungsten and silicon at very high etch rates while providing enhanced etch rate ratios to photoresist and insulators.
Abstract:
Un chip semiconductor que tiene una disposición fusible que comprende un conductor eléctrico que tiene una primera capa de un primer material (24) eléctricamente conductor y una segunda capa de un segundo material (26) eléctricamente conductor, teniendo dicha segunda capa un espesor, una composición y unas propiedades ópticas tales que la combinación de dicha segunda capa con dicha primera capa proporciona características de gran absorción de la energía de la radiación infrarroja incidente emitida desde un láser, minimizando así la cantidad de dicha energía requerida para suprimir, o fundir, la disposición fusible, caracterizado porque, dicha primera capa de dicho primer material (24) está provista de una parte selectiva rebajada (32) y dicha parte selectiva rebajada (32) está llena con dicha segunda capa de dicho segundo material (26).
Abstract:
A high laser absorption copper fuse can minimize the laser energy needed to delete the fuse portion of the conductor. Significantly, this type of fuse structure would allow for formation of copper fuses that can be deleted with appreciably less incident energy, mainly by increasing the absorption of the fuse link at the given incident laser energies. A metal wiring line contains a fuse link segment wherein the fuse link segment is composed of a stack of at least two metals. The underlayer material in the stack of metals is the primary electrical copper conductor, and the overlayer metal, also an electrical conductor, primarily tungsten or titanium-tungsten in composition, has predetermined thickness and optical properties chosen such that the combination of the overlayer metal with the underlayer metal provides for high absorption characteristics to incident infrared energy. Fabrication methods for providing overlaying material to the entire fuse link line, or to selective portions of the fuse link line are presented.