11.
    发明专利
    未知

    公开(公告)号:DE602004024448D1

    公开(公告)日:2010-01-14

    申请号:DE602004024448

    申请日:2004-12-15

    Applicant: IBM

    Abstract: The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a Si-containing layer having a crystal orientation and a biaxial compressive strain. The term “biaxial compressive stress” is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing layer; and creating a biaxial strain in the silicon-containing layer.

    12.
    发明专利
    未知

    公开(公告)号:AT427563T

    公开(公告)日:2009-04-15

    申请号:AT06777968

    申请日:2006-07-25

    Applicant: IBM

    Abstract: The present invention relates to a semiconductor device structure that includes at least one SRAM cell formed in a substrate. Such SRAM cell comprises two pull-up transistors, two pull-down transistors, and two pass-gate transistors. The pull-down transistors and the pass-gate transistors are substantially similar in channel widths and have substantially similar source-drain doping concentrations, while the SRAM cell has a beta ratio of at least 1.5. The substrate preferably comprises a hybrid substrate with at two isolated sets of regions, while carrier mobility in these two sets of regions differentiates by a factor of at least about 1.5. More preferably, the pull-down transistors of the SRAM cell are formed in one set of regions, and the pass-gate transistors are formed in the other set of regions, so that current flow in the pull-down transistors is larger than that in the pass-gate transistors.

    13.
    发明专利
    未知

    公开(公告)号:AT450892T

    公开(公告)日:2009-12-15

    申请号:AT04822326

    申请日:2004-12-15

    Applicant: IBM

    Abstract: The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a Si-containing layer having a crystal orientation and a biaxial compressive strain. The term “biaxial compressive stress” is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing layer; and creating a biaxial strain in the silicon-containing layer.

    14.
    发明专利
    未知

    公开(公告)号:DE602006006088D1

    公开(公告)日:2009-05-14

    申请号:DE602006006088

    申请日:2006-07-25

    Applicant: IBM

    Abstract: The present invention relates to a semiconductor device structure that includes at least one SRAM cell formed in a substrate. Such SRAM cell comprises two pull-up transistors, two pull-down transistors, and two pass-gate transistors. The pull-down transistors and the pass-gate transistors are substantially similar in channel widths and have substantially similar source-drain doping concentrations, while the SRAM cell has a beta ratio of at least 1.5. The substrate preferably comprises a hybrid substrate with at two isolated sets of regions, while carrier mobility in these two sets of regions differentiates by a factor of at least about 1.5. More preferably, the pull-down transistors of the SRAM cell are formed in one set of regions, and the pass-gate transistors are formed in the other set of regions, so that current flow in the pull-down transistors is larger than that in the pass-gate transistors.

Patent Agency Ranking