Abstract:
A method for a memory cell has a trench capacitor and a vertical transistor adjacent to the capacitor. The vertical transistor has a gate conductor above the trench capacitor. The upper portion of the gate conductor is narrower than the lower portion of the gate conductor. The memory cell further includes spacers adjacent the upper portion of the gate conductor and a bitline contact adjacent to the gate conductor. The spacers reduce short circuits between the bitline contact and the gate conductor. The gate contact above the gate conductor has an insulator which separates the gate contact from the bitline. The difference between the width of the upper and lower portions of the gate conductor reduces short circuits between the bitline contact and the gate conductor.
Abstract:
PROBLEM TO BE SOLVED: To make the interaction between straps smaller than that of the conventional ones. SOLUTION: Each deep trench has its rim in a direction orthogonal to its depth direction. A buried strap 60 extends along the rim. The length of the buried strap 60 is limited to 5-20% of the full length of the rim, and is smaller than one lithography feature size. The buried strap 60, which lies along the rim, is preferably curved and positioned along only one corner of the rim. This structure is useful especially for sub-8F 2 cells. COPYRIGHT: (C)2004,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a method, as well as structure, for manufacturing a dynamic random access memory device and a related transistor at the same time. SOLUTION: A channel region and a capacitor opening are formed in a substrate by this method. Then a capacitor conductor is allowed to stick to the capacitor opening. A single insulator layer is formed above the channel region and the capacitor conductor at the same time. The single insulator layer contains a capacitor node dielectrics above the capacitor conductor while a gate dielectrics above the channel region. A single conductor layer is patterned above the single insulator layer at the same time. The single conductor layer contains a gate conductor above the gate dielectrics while a ground plate above the capacitor node dielectrics. COPYRIGHT: (C)2003,JPO
Abstract:
PROBLEM TO BE SOLVED: To obtain non-planar type transistor structure by arranging an active transistor device partially on the sidewall of a deep trench in a cell, and aligning the side wall to a first crystal plane with a crystal orientation along the single- crystal axis. SOLUTION: A deep trench accumulation capacitor 10 is formed in a pad 22 and a substrate 24, and a pattern is formed on the pad 22 using a light lithography step. Then, using such a dry etching step as reactive ion etching, a trench 20 is formed to a desired depth in the substrate 24 through the pad 22. Then, an active transistor device is partially provided on a sidewall 32 of the trench 20, and the sidewall 32 is aligned to first crystal planes (001) and (011) with a crystal orientation set along the single-crystal axis.
Abstract:
PROBLEM TO BE SOLVED: To reduce a method for forming an embedded plate diffusion region in a deep trench storage capacitor by filling a non-photosensitive underfill material into the lower region of a trench before forming a collar at the upper region of the trench. SOLUTION: A trench 10 is covered with a thin barrier film 30, and a non- photosensitive underfill 16 is filled into the lower region of the trench 10. Then, the barrier film 30 is eliminated by an upper region 223 of the trench 10 by chemical etching using wet solution or the like. Also, the underfill 16 masks a lower region, 24 while the barrier film 30 at the upper region 22 is being removed. Then, the underfill 16 is removed from a lower region by stripping or the like by a chemical containing HF, and a collar 32 is formed at the upper region 22 by thermal oxidation growth or the like by the local oxidation process.
Abstract:
Methods of forming a deep trench capacitor memory device and logic devices on a single chip with hybrid surface orientation. The methods allow for fabrication of a system-on-chip (SoC) with enhanced performance including n-type complementary metal oxide semiconductor (CMOS) device SOI arrays and logic transistors on (100) surface orientation silicon, and p-type CMOS logic transistors on (110) surface orientation silicon. In addition, the method fabricates a silicon substrate trench capacitor within a hybrid surface orientation SOI and bulk substrate. Cost-savings is realized in that the array mask open and patterning for silicon epitaxial growth is accomplished in the same step and with the same mask.
Abstract:
A semiconductor memory device (100), in accordance with the present invention, includes a substrate having a major surface including an array region (102) and a support region (104). The array region includes memory cell structures (106) having a first height above the major surface of the substrate. The support area includes dummy structures (119) formed therein having a second height above the major surface. A dielectric layer (118) is formed over the memory cell structures in the array region and the dummy structures in the support region such that a top surface (122) of the dielectric layer is substantially planar wherein topographical features are substantially eliminated on the dielectric layer across the array region and the support region.
Abstract:
A method for clearing an isolation collar (5) from a first interior surface of a deep trench at a location above a storage capacitor while leaving the isolation collar at other surfaces of the deep trench. A insulating material is deposited above a node conductor (3) of the storage capacitor. A layer of silicon (9) is deposited over the barrier material. Dopant ions are implanted at an angle (11) into the layer of deposited silicon within the deep trench, thereby leaving the deposited silicon unimplanted along one side of the deep trench. The unimplanted silicon is etched. The isolation collar is removed in locations previously covered by the unimplanted silicon, leaving the isolation collar in locations covered by the implanted silicon.
Abstract:
An integrated circuit is provided which includes a memory (100) having multiple ports per memory cell for accessing a data bit with each of a plurality of the memory cells. Such memory includes an array of memory cells in which each memory cell includes a plural of capacitors (102) connected together as a unitary source of capacitance (S). A first access transistor (104) is coupled between a firs one of the plurality of capacitors and a first bitline (RBL) and a second access transistor (106) is coupled between a second one of th plurality of capacitors and a second bitline (WBL) In each memory cell, a gate of the first access transistor (104) is connected to a fi wordline (RWL) and a gate of the second access transistor (106) is connected to a second wordline (WWL)