Abstract:
High productivity thin film deposition methods and tools are provided wherein a thin film semiconductor material layer with a thickness in the range of less than 1 micron to 100 microns is deposited on a plurality of wafers in a reactor. The wafers are loaded on a batch susceptor and the batch susceptor is positioned in the reactor such that a tapered gas flow space is created between the susceptor and an interior wall of the reactor. Reactant gas is then directed into the tapered gas space and over each wafer thereby improving deposition uniformity across each wafer and from wafer to wafer.
Abstract:
This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
Abstract:
The disclosed subject matter pertains to deposition of thin film or thin foil materials in general, but more specifically to deposition of epitaxial monocrystalline or quasi-monocrystalline silicon film (epi film) for use in manufacturing of high efficiency solar cells. In operation, methods are disclosed which extend the reusable life and to reduce the amortized cost of a reusable substrate or template used in the manufacturing process of silicon and other semiconductor solar cells.
Abstract:
This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.