Abstract:
A nonvolatile memory device (1') is described comprising a memory array (2), a row decoder (3) and a column decoder (4) for addressing the memory cells (7) of the memory array (2), and a biasing stage (13,19) for biasing the drain terminal of the addressed memory cell (7). The biasing stage (13,19) is coupled between the column decoder (4) and the memory array (2) and comprises a biasing transistor (13) having a drain terminal connected to the column decoder (4), a source terminal connected to the drain terminal of the addressed memory cell (7), and a gate terminal receiving a driving signal of a logic type, the logic levels whereof are defined by precise and stable voltages and are generated by a first driving circuit (19) formed by a driving stage (20) and a buffer (21), cascade-connected.
Abstract:
In a nonvolatile memory device, data stored in a memory cell (21a, 21b) are associated to whether or not the memory cell is switchable between a first state and a second state. Memory cells are irreversibly programmed by applying an irreversible programming signal (I IRP ), such that the nonvolatile memory cells (21a) are made not switchable between the first state and the second state in response to the irreversible programming signal (I IRP ). Reading memory cells includes: assessing (100, 110, 120, 140, 150, 160) whether a memory cell (21a, 21b) is switchable between a first state and a second state; determining that a first irreversible logic value ("1") is associated to the memory cell (21a), if the memory cell (21a) is not switchable between the first state and the second state (130); and determining that a second irreversible logic value ("0") is associated to the memory cell (21b), if the memory cell (21b) is switchable between the first state and the second state (170).
Abstract:
A memory device includes a plurality of memory cells (3), arranged in row and columns, memory cells (3) arranged on the same column having respective first terminals (3a) connected to a same bit line (12) and memory cells (3) arranged on the same row having respective second terminals (3b) selectively connectable to a same word line (13); a supply line (9) providing a supply voltage (V A ); a column addressing circuit (4) for addressing a bit line (12) corresponding to a memory cell (3) to be read; and a row addressing circuit (5) for addressing a word line (13) corresponding to the memory cell (3) to be read. Moreover, the column addressing circuit (4) is configured to bias the addressed bit line (12) corresponding to the memory cell (3) to be read substantially at the supply voltage (V A ).
Abstract:
A phase change memory includes a temperature sensor having a resistance variable with temperature with the same law as a phase-change storage element. The temperature sensor is formed by a resistor (20) of chalcogenic material furnishing an electrical quantity (V(T), I(T)) that reproduces the relationship between the resistance of a phase change memory cell and temperature; the electrical quantity is processed (21) so as to generate reference quantities as necessary for writing and reading the memory cells. The chalcogenic resistor (20) has the same structure as a memory cell and is programmed with precision, preferably in the reset state.
Abstract:
A nonvolatile memory device (10'; 10") is described comprising a memory array (11), a row decoder (12) and a column selector (13) for addressing the memory cells (16) of the memory array (11), and a biasing stage (22; 36, 28) for biasing the array access device terminal of the addressed memory cell (16). The biasing stage (22; 36 28) is arranged between the column selector (13) and the memory array (11) and comprises a biasing transistor (22; 36) having a drain terminal connected to the column selector (13), a source terminal connected to the array access device terminal of the addressed memory cell (16), and a gate terminal receiving a logic driving signal, the logic levels of which are defined by precise and stable voltages and are generated by a logic block (31) and an output buffer (32) cascaded together. The output buffer (32) may be supplied with either a read voltage (VREAD) or a program voltage (VPROG) supplied by a multiplexer (33). The biasing transistor (22; 36) may be either included as part of the column selector (13) and formed by the selection transistor (22) which is closest to the addressed memory cell (16) or distinct from the selection transistors (20, 21, 22) of the column selector (13).
Abstract:
A semiconductor memory device ( 100 ), including a plurality of programmable memory cells ( MC ) each one adapted to be brought into one among at least a first status and a second status, said plurality of memory cells including memory cells intended to store data, and means for accessing ( 115,130,135 ) the memory cells for reading/modifying their status. At least one memory cell ( FMC ) in said plurality is used as detector memory cell, and control means ( 145 ) operatively associated with the at least one detector memory cell are provided, said control means being adapted to establishing a potential loss of the data stored in the memory cells of said plurality based on a detected first status of the at least one detector memory cell.