Abstract:
A process for fabricating a suspended microelectromechanical system (MEMS) structure comprising epitaxial semiconductor functional layers that are partially or completely suspended over a substrate. A sacrificial release layer and a functional device layer are formed on a substrate. The functional device layer is etched to form windows in the functional device layer defining an outline of a suspended MEMS device to be formed from the functional device layer. The sacrificial release layer is then etched with a selective release etchant to remove the sacrificial release layer underneath the functional layer in the area defined by the windows to form the suspended MEMS structure.
Abstract:
A method and a system for manufacturing two-dimensional and three-dimensional nanostructures and nanodevices are described, wherein the formation of the nanostructure (of the nanodevice) on a target substrate (20) is made, at a millimetric or super-millimetric distance (d) from the substrate, by the deposition of material emitted in the form of an atomic/molecular beam having a selected pattern (12, 16) corresponding, at an enlarged scale, to the desired pattern (22) of the nanostructure (nanodevice). The projection of the patterned beam through a diaphragm (26), associated with the substrate at a micrometric or sub-micrometric distance (4) and having at least one pinhole (30) aperture of nanometric size, brings about the formation of a reversed image of the emission pattern at a reduced scale on the substrate.
Abstract:
The present invention relates to a device for interfacing nanofluidic and microfluidic components suitable for use in performing high throughput macromolecular analysis. Diffraction gradient lithography (DGL) is used to form a gradient interface between a microfluidic area and a nanofluidic area. The gradient interface area reduces the local entropic barrier to anochannels formed in the nanofluidic area. In one embodiment, the gradient interface area is formed of lateral spatial gradient structures for narrowing the cross section of a value from the micron to the nanometer length scale. In another embodiment, the gradient interface area is formed of a vertical sloped gradient structure. Additionally, the gradient structure can provide both a lateral and vertical gradient.
Abstract:
The invention relates to a lithographic method for producing microcomponents having a submillimeter structure, whereby the resist material can be dissolved in a simple manner. According to the invention, a structurable adhesive layer is applied to a metallic starting layer, a layer consisting of photostructurable epoxy resin is applied to the adhesive layer, and the epoxy resin is structured by means of selective illumination and dissolution of the unexposed regions in order to create supporting structures and free spaces between the supporting structures. Only the free spaces provided for the microcomponent and located between the epoxy resin supporting structures are then filled with metal according to a galvanic method, and the epoxy resin is removed, the remaining free spaces being filled with etching agents.