シリコンゲルマニウムを含むデバイスおよびその製造方法
    12.
    发明专利
    シリコンゲルマニウムを含むデバイスおよびその製造方法 审中-公开
    含有硅锗的装置及其制造方法

    公开(公告)号:JP2016197659A

    公开(公告)日:2016-11-24

    申请号:JP2015077048

    申请日:2015-04-03

    Abstract: 【課題】応力の低減化が図れたシリコンゲルマニウムを含むデバイスの製造方法を提供すること。 【解決手段】製造方法は、非晶質層1上に非晶質金属層2を形成する工程と、非晶質金属層2上に、金属を含み、結晶面が所定の面に配向する金属層2を形成する工程と、金属層2上、にシリコンを含む半導体および前記金属層に含まれる前記金属と同一の金属を含む第1の層を形成する工程とを含む。前記製造方法は、さらに、前記第1の層を、結晶面が前記所定の面に配向する前記半導体と前記金属との化合物を含む第2の層4aに変える工程と、第2の層4a上に、結晶面が前記所定の面に配向する多結晶シリコンゲルマニウムを含む第3の層5を形成する工程とを含む。 【選択図】図5

    Abstract translation: 要解决的问题:提供一种包含应力降低的硅锗的器件的制造方法。解决方案:一种制造方法包括在非晶层1上形成非晶态金属层2的步骤,形成金属层的步骤 2,在非晶质金属层2上含有金属并具有定向到预定平面的晶面的步骤,以及形成包含含有与金属层中所含的硅和与金属相同的金属的半导体的第一层的步骤 金属层2.制造方法还包括将第一层改变为含有金属化合物的第二层4a和具有定向到预定平面的晶面的半导体的步骤,以及形成第三层5的步骤 ,含有在第二层4上具有定向到预定平面的晶面的多晶硅锗。选择的图示:图5

    Electrostatic drive type mems element and manufacturing method therefor, optical mems element, optical modulator, glv device and laser display
    13.
    发明专利
    Electrostatic drive type mems element and manufacturing method therefor, optical mems element, optical modulator, glv device and laser display 审中-公开
    静电驱动型MEMS元件及其制造方法,光学MEMS元件,光学调制器,GLV器件和激光显示器

    公开(公告)号:JP2003340795A

    公开(公告)日:2003-12-02

    申请号:JP2002144981

    申请日:2002-05-20

    Abstract: PROBLEM TO BE SOLVED: To flatten a beam composing an electrostatic drive type MEMS element or stabilize and uniformalize a beam shape. SOLUTION: The electrostatic drive type MEMS element comprises a substrate side electrode 33, a beam 36 disposed opposite to the substrate side electrode 33, having a drive side electrode 37 and supported on the both ends thereof, and at least two supporting parts 35A, 35B and 35C, 35D are provided on the both ends of the beam 36 respectively. In the supporting parts 35, the height t1 of the inner supporting parts 35B, 35C is set to be lower than the height t2 of the outer supporting parts 35A, 35D. COPYRIGHT: (C)2004,JPO

    Abstract translation: 要解决的问题:使构成静电驱动型MEMS元件的光束变平或稳定并均匀化光束形状。 解决方案:静电驱动型MEMS元件包括基板侧电极33,与基板侧电极33相对设置的光束36,具有驱动侧电极37并被支撑在其两端,以及至少两个支撑部 35A,35B和35C,35D分别设置在梁36的两端。 在支撑部35中,内侧支撑部35B,35C的高度t1被设定为低于外部支撑部35A,35D的高度t2。 版权所有(C)2004,JPO

    COATED CAPACITIVE SENSOR
    14.
    发明申请
    COATED CAPACITIVE SENSOR 审中-公开
    涂层电容式传感器

    公开(公告)号:WO2013020080A1

    公开(公告)日:2013-02-07

    申请号:PCT/US2012/049587

    申请日:2012-08-03

    Abstract: In one embodiment, a method of forming a MEMS device includes providing a substrate, forming a sacrificial layer above the substrate layer, forming a silicon based working portion on the sacrificial layer, releasing the silicon based working portion from the sacrificial layer such that the working portion includes at least one exposed outer surface, forming a first layer of silicide forming metal on the at least one exposed outer surface of the silicon based working portion, and forming a first silicide layer with the first layer of silicide forming metal.

    Abstract translation: 在一个实施例中,形成MEMS器件的方法包括提供衬底,在衬底层上形成牺牲层,在牺牲层上形成硅基工作部分,从牺牲层释放硅基工作部分,使得工作 部分包括至少一个暴露的外表面,在硅基工作部分的至少一个暴露的外表面上形成第一层硅化物形成金属,以及形成具有第一层硅化物形成金属的第一硅化物层。

    POLYSILICON DEPOSITION AND ANNEAL PROCESS ENABLING THICK POLYSILICON FILMS FOR MEMS APPLICATIONS
    15.
    发明申请
    POLYSILICON DEPOSITION AND ANNEAL PROCESS ENABLING THICK POLYSILICON FILMS FOR MEMS APPLICATIONS 审中-公开
    多晶硅沉积和退火工艺使MEMS应用的薄膜多晶硅薄膜

    公开(公告)号:WO2008124595A2

    公开(公告)日:2008-10-16

    申请号:PCT/US2008059415

    申请日:2008-04-04

    Abstract: A method of forming a thick polysilicon layer for a MEMS inertial sensor includes forming a first amorphous polysilicon film on a substrate in an elevated temperature environment for a period of time such that a portion of the amorphous polysilicon film undergoes crystallization and grain growth at least near the substrate. The method also includes forming an oxide layer on the first amorphous polysilicon film, annealing the first amorphous polysilicon film in an environment of about 1100°C or greater to produce a crystalline film, and removing the oxide layer. Lastly, the method includes forming a second amorphous polysilicon film on a surface of the crystalline polysilicon film in an elevated temperature environment for a period of time such that a portion of the second amorphous polysilicon film undergoes crystallization and grain growth at least near the surface of the crystalline polysilicon film.

    Abstract translation: 形成用于MEMS惯性传感器的厚多晶硅层的方法包括在高温环境中在衬底上形成第一非晶多晶硅膜一段时间,使得非晶多晶硅膜的一部分经历结晶并且晶粒生长至少接近 底物。 该方法还包括在第一非晶多晶硅膜上形成氧化物层,在约1100℃或更高的环境中退火第一非晶多晶硅膜以产生结晶膜,并除去氧化物层。 最后,该方法包括在高温环境下在晶体多晶硅膜的表面上形成第二非晶多晶硅膜一段时间,使得第二非晶多晶硅膜的一部分在至少在表面附近发生结晶和晶粒生长 晶体多晶硅膜。

    MICROSTRUCTURE AND ELECTRONIC DEVICE
    19.
    发明申请
    MICROSTRUCTURE AND ELECTRONIC DEVICE 审中-公开
    微结构和电子器件

    公开(公告)号:US20160016792A1

    公开(公告)日:2016-01-21

    申请号:US14873091

    申请日:2015-10-01

    Inventor: Ming Fang

    Abstract: A method of manufacturing microstructures, such as MEMS or NEMS devices, including forming a protective layer on a surface of a moveable component of the microstructure. For example, a silicide layer may be formed on a portion of at least four different surfaces of a poly-silicon mass that is moveable with respect to a substrate of the microstructure. The process may be self-aligning.

    Abstract translation: 一种制造微结构的方法,例如MEMS或NEMS器件,包括在微结构的可移动部件的表面上形成保护层。 例如,可以在可相对于微结构的基板移动的多晶硅块的至少四个不同表面的一部分上形成硅化物层。 该过程可以是自对准的。

    Low temperature ceramic Microelectromechanical structures
    20.
    发明授权
    Low temperature ceramic Microelectromechanical structures 有权
    低温陶瓷微机电结构

    公开(公告)号:US08975104B2

    公开(公告)日:2015-03-10

    申请号:US14185160

    申请日:2014-02-20

    Abstract: A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience while also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.

    Abstract translation: 提供了一种提供与硅CMOS电子器件兼容的微机电结构(MEMS)的方法。 该方法提供了将MEMS制造的集成电路的最大曝光限制在低于350℃并可能低于250℃的工艺和制造顺序,从而允许将MEMS器件直接制造到电子器件上,例如 作为Si CMOS电路。 该方法进一步提供具有多个非导电结构层的MEMS器件,例如用小的侧向间隙分离的碳化硅。 这种碳化硅结构提供了增强的材料性能,增加了环境和化学弹性,同时还允许利用结构层的非导电材料实现新颖的设计。 在形成MEMS元件(例如马达,齿轮,转子,平移驱动器等)中使用碳化硅是有益的,其中增加的硬度降低了操作期间这些元件的磨损。

Patent Agency Ranking