Abstract:
In an electron tube based on a cold cathode, a cesium source (17) containing Csx—Auy or Csx—Sby is provided near the cold cathode (7), preferably in contact with the first grid (9). Cesium is introduced into the source during activation of the tube. The vapor pressure of the cesium compounds is such that proper delivery of cesium is guaranteed throughout the life-time of the cathode.
Abstract:
A thin type image display device for displaying an image by emitting light from a fluorescer with irradiation of electron beams thereto. The device has a cathode panel between a front panel and a back panel in such a manner that a space is existent between the cathode panel and the back panel, wherein through holes for diffusion of getters are formed in the cathode panel to maintain the image quality at the center of a display screen, or the cathode panel is supported by getters to maintain a required pressure, hence attaining a higher image quality even on a large-sized display screen. A gate electrode may be composed of a getter material.
Abstract:
Electron-optical device having two elongate emitting regions arranged symmetrically with respect to a longitudinal axis for producing two electron beams having an elongate cross-section. By means of electron grids, the two beams are focused at the same point of an electron target arranged transversely to the longitudinal axis and having a short central axis and a long central axis. The elongate emitting regions have their smallest cross-section parallel to the scanning direction of a device, cooperating with the electron-optical device, for scanning a target arranged transversely to the longitudinal axis.
Abstract:
An electron has an electron-emitting region, a longitudinal axis and an arrangement of apertured electron grids along the axis. A first grid has an aperture for passing electrons, which aperture is located further outwards with respect to the longitudinal axis than the emitting region. One of the other grids is provided with a shield so as to shield the edge wall of the aperture, if it is located within direct view of the electron-emitting region, from incidence of positive ions.
Abstract:
Flat viewing screen having a matrix of selectively addressable picture elements, including two mutually parallel support plates being vacuum-tightly connected to each other and having sides facing each other, at least one separately addressable electrode disposed on each of the sides, a multiplicity of spacers each being assigned to one picture element for spacing said support plates from each other, each spacer including a pin being integral with and protruding from one of the support plates and a hollow cylinder having an inner surface and a bottom and being integral with and protruding from the other of the support plates, each pin being inserted into one hollow cylinder at a space from the inner surface and contacting the bottom of the hollow cylinder, and a method of producing the same.
Abstract:
The display device has an electrically conductive phosphorcoated transparent screen, a panel element disposed in close parallel relation to the screen with the panel having an array of electron emitting regions on a semiconductor plate, each controlled by an adjacent memory cell in the plate. An enclosure which includes the screen surrounds the panel. An electric potential is established between the screen and the panel, and a vacuum produced in the enclosure. Preferably, the memory cells associated with the electron emitting regions are storage elements of a shift register which extend throughout the entire array of electron emitters. A binary signal is introduced into the shift register which is used to establish a predetermined pattern of electron emitting regions on the semiconductor panel. This produces a display on the spaced transparent screen when the emitted electrons strike the phosphor on the screen.
Abstract:
Device for generating X-rays, comprising: -a field emission cathode (10) configured to emit electrons when an electrical field is applied to the cathode (10); and -an anode (20), the anode being configured to generate X-rays as a result of receiving electrons from the field emission cathode (10); wherein the cathode (10) comprises an electron emission surface (S) extending opposite the anode (20), the cathode (10) being configured to emit electrons substantially from the electron emission surface (S) during use.
Abstract:
A semi-conductor electron source (102) includes a planar emission region (114) for generating an electron emission, and a focusing structure (118, 120) for focusing the electron emission into an electron beam. The emission region (114) may be a porous region located in a layer on an active substrate (104). The focusing structure may include an aperture (122) through which electron emission is focused.
Abstract:
PROBLEM TO BE SOLVED: To provide a discharge light emitting device in which an electron is discharged from a p-type semiconductor, and which has a high discharge efficiency of the electron, and a long lifetime. SOLUTION: Provided are: an enclosure 101; gas 107 for discharge sealed in the enclosure 101; an anode 103 and a cathode 102 installed in the enclosure 101; electrode members 114 respectively connected to the anode 103 and the cathode 102; molybdenum foils 104 connected to the electrode members 114; and extraction leads 105 connected to the molybdenum foils 104. COPYRIGHT: (C)2007,JPO&INPIT