Abstract:
광원에 의해 산출된 펄스형 광 빔의 스펙트럼 특성은 복수의 스텝을 포함하는 패턴 주기를 가지는 사전 결정된 반복 패턴을 기초로 펄스형 광 빔의 파장을 변경하는 단계로서, 패턴 주기 내의 각각의 스텝에 대한 기준선 파장으로부터의 파장 오프셋 만큼 펄스형 광 빔의 파장을 시프트하는 것을 포함하는 상기 변경하는 단계; 패턴에 걸쳐 파장이 변경될 때 패턴 주기 내의 각각의 스텝에 대한 광 빔의 파장을 측정하는 단계; 및 패턴 주기 내의 각각의 스텝에 대한 광 빔의 측정된 파장을 적어도 일부 기초로 하여 패턴 주기 내의 모든 스텝을 포함하는 평가 윈도우에 걸쳐 펄스형 광 빔의 스펙트럼 특성을 추정하는 단계에 의해 추정된다.
Abstract:
상기 펄싱된 레이저에 의해 산출된 레이저 출력 광의 일부를 상기 광 검출 어레이의 출력에서 앨리어싱 아티팩트를 방지하기 위해 상기 광 검출 엘리먼트의 어레이를 가로질러 상기 레이저 빔의 일부를 이동시키는 방식으로 광 검출 엘리먼트의 어레이로 통과시키는 것을 포함하는 단계에 의해, 광검출 엘리먼트의 어레이를 활용하는 펄싱된 레이저의 레이저 출력 광 펄스의 대역폭을 검출하는 것을 포함하는 방법 및 장치가 제공된다. 레이저 출력 광에 의해 형성된 이미지의 부분이 예를 들면 공간 또는 시간 도메인에서 언더 샘플링된다. 샘플링된 프린지 패턴생성 엘리먼트의 출력의 이미지의 연관된 피처 크기는 광 검출 엘리먼트의 어레이에서의 개별 광 검출 엘리먼트의 크기에 대해 작은 크기를 포함한다. 광검출 엘리먼트, 레이저, 레이저 출력 광 펄스, 대역폭, 레이저 빔, 언더 샘플링, 공간 도메인, 시간 도메인, 프린지, 프린지 패턴생성 엘리먼트, 광 디텍터 엘리먼트, 보간 기술
Abstract:
The present invention provides an optical characteristics measuring apparatus capable of planning quickness of measurement. According to an optical characteristics measuring apparatus (1) of the present invention, a supporting unit (4) supports a plate type sample (S), by being in contact with a plurality of separated parts in a lower surface of the sample. A lifting unit (5) includes one or a plurality of sustain heads (52) being movable toward the supported sample, and makes the sustain head be in contact with the proximity of the measurement part of the sample, and generates contact pressure between the sustain head and the sample. A floodlighting unit (6) irradiates a light to the measurement part of the sample, under the state that the contact pressure is generated between the sustain head and the sample. A light detection unit (7) detects a light transmitting the measurement part of the sample.
Abstract:
A spectroscopy system (500) is provided which operates in the vacuum ultra-violet spectrum. More particularly, a system utilizing reflectometry techniques in the vacuum ultraviolet spectrum is provided for use in metrology applications. To ensure accurate and repeatable measurement, the environment of the optical paths (506, 508) is controlled to limit absorption effects of gases that may be present in the optical path. To account for absorption effects that may still occur, the length of the optical path is minimized. To further account for absorption effects, the reflectance data may be referenced to a relative standard. ® KIPO & WIPO 2007
Abstract:
Near-IR rays are used to be able to measure calorie, thereby measuring the calorie of an object easily and in a short time by a non-destructive method. A calorie measuring device comprising an object holding unit (1) having a table (2) on which to mount an object (M) to be examined, a light source unit (20) irradiating the object (M) on the table (2) with a near-IR-region ray, a light reception unit (30) receiving a reflection light or transmitted light from the object (M), and a control unit (40) calculating the calorie of the object (M) based on the absorbance of light received by the reception unit (30), wherein the control unit (40) computes the calorie of the object (M) from a regression expression calculated by a quadratic differential spectrum multiple regression analysis at the absorbance of a near-IR ray applied in advance to and reflected off or passed through a calorie-known sample object (M) and from the absorbance of light received by the reception unit (30).
Abstract:
A bandwidth meter method and apparatus for measuring the bandwidth of a spectrum of light emitted from a laser input to the bandwidth meter is disclosed, which may comprise an optical bandwidth monitor providing a first output representative of a first parameter which is indicative of the bandwidth of the light emitted from the laser and a second output representative of a second parameter which is indicative of the bandwidth of the light emitted from the laser; and, an actual bandwidth calculation apparatus utilizing the first output and the second output as part of a multivariable equation employing predetermined calibration variables specific to the optical bandwidth monitor, to calculate 10 an actual bandwidth parameter. The actual bandwidth parameter may comprise a spectrum full width at some percent of the maximum within the full width of the spectrum of light emitted from the laser ("F)WXM") or a width between two points on the spectrum enclosing some percentage of the energy of the full spectrum of the spectrum of light emitted from the laser ("EX"). The bandwidth monitor may comprise an etalon and the first output is representative of at least one of a width of a fringe of an optical output of the etalon at FWXM or a width between two points on the spectrum enclosing some percentage of the energy of the full spectrum of light emitted from the laser ("EX"') and the second output is representative of at least one of a second FWX"M or EX"', where XXX" and X'X"'. The precomputed calibration variables may be derived from a measurement of the value of the actual bandwidth parameter utilizing a trusted standard, correlated to the occurrence of the first and second outputs for a calibration spectrum. The value of the actual bandwidth parameter is calculated from the equation: estimated actual BW parameter = K*w l + L*w2 + M, where wl = the first measured output representative of FWXM or EX' and w2 is the second measured output representative of FWX"M or EX"'. The apparatus and method may be implemented in a laser lithography light source and/or in an integrated circuit lithography tool.
Abstract:
본 발명은 적외선 분광기의 시료홀더에 대한 것이다. 적외선 분광기로 웨이퍼 시료의 상태평가를 수행하는 웨이퍼 측정 스테이지에 걸쳐서 사용하는 잉곳 단면 시료를 지지하는 적외선 분광기의 시료홀더로, 상기 웨이퍼 측정 스테이지에 걸쳐지며, 중앙에는 적외선의 투과를 위한 중공이 형성된 프레임과; 상기 프레임의 상부에 다양한 규격의 시료를 지지 고정할 수 있도록 서로 다른 폭으로 형성된 복수개의 홀딩가이드를 포함하여 구성되는 것을 특징으로 한다.
Abstract:
PURPOSE: An apparatus for preventing oil from splashing and an oil spectroscopic analyzer having the same are provided to prevent oil from splashing towards a light receiving lens while oil is being converted into a plasma state. CONSTITUTION: An apparatus for preventing oil from splashing includes a blowing source(110) for generating an air flow and a guide(120) for guiding the air flow generated by the blowing source(110) to electrodes(12,14) from a light receiving lens(22) of a spectroscopic analyzer. The guide(120) is installed at a front surface of the receiving lens(22) in order to receive the light receiving lens(22). An output hole(122) is formed at a front surface of the guide(120). An input hole(124) is formed at an upper surface of the guide(120). The guide(120) is connected to the blowing source(110) through an air pipe(102).
Abstract:
PURPOSE: A dual-pass etalon spectrometer is provided to generate a precise fringe data able to measure band widths having a precision required for microlithography with relation to delta lambda FWHM and delta lambda 95%. CONSTITUTION: In a dual-pass etalon spectrometer, an optical scattering system(34) makes laser beams(16) facing toward a plurality of directions for generating scattered beams, and spectrum components of the scattered beams are divided by an angle to be permeated via the etalon(25). A reverse reflection mirror(38) reflects the permeated light beam components reversely via the etalon. The twice permeated spectrum components is focused on an optical detector(44) formed of an optical diode array by a lens(42) to detect a fringe pattern(49). The reverse reflection mirror is to be a hollow reverse reflection mirror.
Abstract:
Die Erfindung betrifft ein Verfahren (500) zum Erkennen eines direkten Lichtreflexionsstrahls (120) von einem Objekt (335) auf einen Lichtsensor (100), wobei der Lichtsensor (100) zumindest zwei räumlich getrennt angeordnete und getrennt auslesbare Sensorelemente (110a, 110b, 110c, 110d) aufweist. Das Verfahren (500) umfasst einen Schritt des Einlesens (510) eines ersten Lichtintensitätswertes von auf ein erstes Sensorelement (110a) auftreffenden Lichts und zumindest eines zweiten Lichtintensitätswertes von auf das zumindest zweite Sensorelement (110b) auftreffenden Lichts. Ferner umfasst das Verfahren (500) einen Schritt des Erkennens (520) des Auftreffens des direkten Lichtreflexionsstrahls (120) auf das erste Sensorelement (110a), wenn der erste Lichtintensitätswert größer als der zweite Lichtintensitätswert ist.