Abstract:
A backplane arrangement is provided for an electronic mounting rack with a base backplane with several contact strips, wherein a free space, into which at least one additional backplane can be inserted, is provided on the base backplane.
Abstract:
In a method for integrating a component (3) into a printed circuit board, the following steps are provided: providing two completed printed circuit board elements (1, 4), which more particularly consist of a plurality of interconnected plies or layers (6, 7, 8), wherein at least one printed circuit board element (4) has a cutout or depression (10), arranging the component (3) to be integrated on one of the printed circuit board elements (1) or in the cutout of the at least one printed circuit board element, and connecting the printed circuit board elements (1, 4) with the component (3) being accommodated in the cutout (10), as a result of which it is possible to obtain secure and reliable accommodation of a component or sensor (3) in a printed circuit board. Furthermore, a printed circuit board of this type comprising an electronic component (3) integrated therein is provided.
Abstract:
A component mounting method of a multilayer printed wiring board includes a plurality of solder bumps to mount electronic components formed on both of or either of the front and back thereof, wherein when the solder bumps are formed of any of first, second, third and fourth solders, the first, second, third and fourth solders have different melting points and the melting points of the first, second, third and fourth solders are arranged as the melting point of the first solder, the melting point of the second solder, the melting point of the third solder and the melting point of the fourth solder in order of high melting point and the first, second, third and fourth solders are sequentially used to solder electronic components and the like in order of high melting point. Further, in that case, it is preferable that the solder bump having large volume should be soldered earlier than other solder bumps. This multilayer printed wiring board is easy to mount components, excellent in work efficiency or easy in reworkable process and a mounting method of such multilayer printed wiring board is also provided.
Abstract:
A technique that makes it possible to enhance the reliability of a module using PCB as its module substrate is provided. Solder connection of a single-chip component 43, an integrated chip component 44, and a semiconductor chip IC2 by Pb-free solder is carried out by heat treatment at a temperature below 280° C. using a heat block. Solder connection of a semiconductor chip IC1 by high-melting point solder is carried out by heat treatment at a temperature of 280° C. or higher using a hot jet. Thus, the semiconductor chip IC1 can be solder connected to PCB 38 using high-melting point solder without the following troubles: damage to the PCB 38 due to heat, for example, burning of solder resist; and peeling of prepreg from a core material. Therefore, the semiconductor chip IC1 can be mounted over the PCB 38 with high connection strength.
Abstract:
An electro-optical apparatus comprising an electro-optical panel including a display section, a flexible printed circuit board, and a rigid circuit board. The flexible printed circuit board includes a first terminal connected to the electro-optical panel and a second terminal connected to an external circuit. The rigid circuit board includes a first surface on which electronic components are mounted and a second surface mounted to the flexible printed circuit board. The second surface of the rigid circuit board is opposite to the first surface. An entirety of the rigid circuit board is stacked on the flexible printed circuit board within the flexible printed circuit board. The rigid circuit board is electrically connected to the flexible printed circuit board. The flexible printed circuit board is bent toward the external circuit.
Abstract:
A component mounting method of a multilayer printed wiring board includes a plurality of solder bumps to mount electronic components formed on both of or either of the front and back thereof, wherein when the solder bumps are formed of any of first, second, third and fourth solders, the first, second, third and fourth solders have different melting points and the melting points of the first, second, third and fourth solders are arranged as the melting point of the first solder, the melting point of the second solder, the melting point of the third solder and the melting point of the fourth solder in order of high melting point and the first, second, third and fourth solders are sequentially used to solder electronic components and the like in order of high melting point. Further, in that case, it is preferable that the solder bump having large volume should be soldered earlier than other solder bumps. This multilayer printed wiring board is easy to mount components, excellent in work efficiency or easy in reworkable process and a mounting method of such multilayer printed wiring board is also provided.
Abstract:
An electronic apparatus includes: a housing; a motherboard that is accommodated in the housing; a first daughterboard that is accommodated in the housing; a second daughterboard that is accommodated in the housing; a host controller that is mounted on the motherboard; a bridge controller that is mounted on the first daughterboard and electrically connected to the host controller; a first chip that is mounted on the first daughterboard and electrically connected to the bridge controller; and a second chip that is mounted on the second daughterboard and electrically connected to the bridge controller.
Abstract:
An electronic system comprising: an electronic system support substrate for the attachment of components of the electronic system, the electronic system support substrate including electric signal propagation paths for the propagation of electric signals between the system components; at least a first and a second electronic components wherein at least the first electronic component is part of a module in mechanical and electrical connection with the electronic system support substrate, the module comprising a module substrate to which the first electronic component is at least mechanically connected, and an electric coupling between the first and the second electronic components, for the electric coupling allowing the first and the second electronic components exchange of electric signals. The electric coupling comprises a direct electric connection particularly formed by a flexible electrical interconnection member, between the first and the second electronic components, the electric connection being independent of the electronic system support substrate.
Abstract:
Provided is a printed circuit board for a semiconductor device. The printed circuit board includes an upper surface ball out structure configured the same as a ball array of a semiconductor device package mounted on the upper surface of the printed circuit board, and a lower surface ball out structure configured the same as a ball out structure of a lower board. The lower surface ball out structure is a standardized structure.
Abstract:
A memory extension memory module, a memory module system, and a memory module is disclosed. The memory module including at least one memory device and a connector for connecting the memory module to a computer system, wherein the memory module additionally includes a surface-mounted connector for connecting a memory extension memory module to the memory module. Furthermore, a method for manufacturing a memory module is disclosed. The memory module including at least one memory device and at least one connector for connecting a memory extension memory module to the memory module, wherein the at least one memory device and the at least one connector are connected to the memory module in a single manufacturing process.