Abstract:
A two-terminal electronic isolation device (10) has an anode (20), a cathode (30), an integral tunnel junction (50), and a current-injection layer (40). The current-injection layer (40) comprises a silicon-rich oxide.
Abstract:
A USB device, integrated circuit, smart card and method are disclosed. A USB transceiver is connected to a data interface and operable at a respective low speed and full speed configuration. A processor as a USB device controller is operatively connected to the low speed USB transceiver and full speed USB transceiver and operable for transmitting a different device descriptor to a USB host for performing an enumeration depending on whether a low speed or high speed operation is chosen.
Abstract:
A noise-shaping coder with variable or reconfigurable characteristics is disclosed. In one exemplary embodiment, an improved apparatus for signal modulation is disclosed. The apparatus (see figure 1) generally comprises a noise-shaping coder having programmable coefficients, (see figure 1, CSEL), programmable coder order (see figure 1, MSEL), programmable oversampling frequency (see figure 1, CKEN), and/or programmable dither (see figure 1, D). In a second exemplary embodiment, an improved method for implementing noise shaping coding is disclosed. The apparatus generally compromises a means for switching from one order coder to another order coder, as well as switching oversampling frequency.
Abstract:
Improved interpolator (1304) and decimator (1324) apparatus and methods, including the addition of an elastic storage element (192) comprises a FIFO which advantageously allows short term variation in sample clocks to be absorbed, and also provides a feedback mechanism for controlling a delta-sigma modulated modulo-N counter based sample clock generator. The elastic element combined with a delta-sigma modulator and counter creates a noise-shaped frequency lock loop without additional components, resulting in a much simplified imterpolator and decimator.
Abstract:
A method and apparatus is disclosed. In one embodiment, a smart card has an IC with voltage conditioning circuitry and a pull-up resistor. The card is capable of signaling a host over a bus using the resistor selectively coupled to a voltage output of the conditioning circuitry and a first output of the card. The conditioning circuitry output is selectively coupled to the first output through the resistor, responsive to being powered by the bus but not transmitting. This tends to pull up the first output to the voltage level of the voltage source, making the card capable of being detected by the host upon the bus being driven by a host. Selectively disconnecting the resistor while transmitting or receiving results in a more balanced output. Since the resistor and conditioning circuitry are an integrated part of the IC, no separate contact is required for voltage to the resistor, permiting compatibity with the contact configuration of certain existing smart cards, and eliminating a pull-up resistor or conditioning circuitry in a card reader.
Abstract:
A method for forming an aluminum contact through an insulating layer includes the formation of an opening. A barrier layer is formed, if necessary, over the insulating layer and in the opening. A thin refractory metal layer is then formed over the barrier layer, and aluminum deposited over the refractory metal layer. Proper selection of the refractory metal layer and aluminum deposition conditions allows the aluminum to flow into the contact and completely fill it. Preferably, the aluminum is deposited over the refractory metal layer without breaking vacuum.
Abstract:
Protection contre des surtensions La présente description concerne une interface d’alimentation (414) comprenant :un premier interrupteur (309) reliant une borne d’entrée (301) de l’interface à une borne de sortie (305) de l’interface ;un pont diviseur (311) de tension reliant la borne d’entrée (301) à un nœud de référence (313) configuré pour recevoir un potentiel de référence (GND) ; un comparateur (323) dont une première entrée est connectée à un premier nœud (319) du pont diviseur et dont une deuxième entrée est configurée pour recevoir un potentiel constant (Vth) ; un convertisseur numérique analogique (DAC) ;un deuxième interrupteur (329) reliant une sortie du convertisseur (DAC) à un deuxième nœud (321) du pont diviseur (311) ; etun premier circuit (331) configuré pour commander le deuxième interrupteur (329) et le convertisseur (DAC), dans lequel une commande du premier interrupteur est déterminée par un signal de sortie (comp_sig) du comparateur (323). Figure pour l'abrégé : Fig. 2
Abstract:
L'invention concerne un circuit de commande de transistors (44, 46) en parallèle comprenant au moins deux étages (42, 43) destinés chacun à fournir un signal de commande à un des transistors, dans lequel un courant de sortie de chaque étage est régulé selon la différence entre la somme de valeurs représentatives des courants de sortie mesurés de chaque étage et la somme de valeurs des consignes affectées à tous les étages.
Abstract:
Eine zugverspannte Siliziumschicht wird strukturiert, um eine erste Gruppe von Rippen in einem ersten Substratbereich und eine zweite Gruppe von Rippen in einem zweiten Substratbereich zu bilden. Die zweite Gruppe von Rippen wird mit einem zugverspannten Material bedeckt, und es wird ein Glühen durchgeführt, um das zugverspannte Siliziumhalbleitermaterial in der zweiten Gruppe von Rippen zu entspannen und entspannte Silizium-Halbleiterrippen in dem zweiten Bereich herzustellen. Die erste Gruppe von Rippen wird mit einer Maske bedeckt, und auf den entspannten Silizium-Halbleiterrippen wird Silizium-Germanium-Material vorgesehen. Danach wird eine Diffusion von Germanium aus dem Silizium-Germanium-Material in die entspannten Silizium-Halbleiterrippen bewirkt, um druckverspannte Silizium-Germanium-Halbleiterrippen in dem zweiten Substratbereich zu erzeugen (aus welchen p-Kanal-FinFET-Bauelemente gebildet werden). Die Maske wird entfernt, um zugverspannte Silizium-Halbleiterrippen in dem ersten Substratbereich freizulegen (aus welchen n-Kanal-FinFET-Bauelemente gebildet werden).