Abstract:
A printed circuit board is made from at least one non-woven sheet or web layer comprising at least 50% by weight acrylic fibers, with any balance substantially electrically non-conductive fibers, filler, and binder. The sheet or web is preferably made by the foam process, and may contain 60-80% straight polyacrylonitrile fibers and 40-20% fibrillated (pulp) ones. The web or sheet is preferably compressed by thermal calendering so that it has a density of about 0.1-1 grams per cubic centimeter; and the web or sheet may have a basis weight of between about 20-120 grams per square meter. The web or sheet may also have a 1-40% of substantially electrically non-conductive organic or inorganic binder, or may be substantially binder free. A printed circuit board made using the layers of these non-woven webs or sheets is otherwise conventional, including a pre-preg material, electrically conductive circuit elements, and electronics, and has improved properties compared to woven glass and non-woven aramid products, including improved fiber consolidation, easy board construction, and improved MD/CD ratio and stability.
Abstract:
A method and materials for drilling through-holes in printed circuit boards with a drilling tool is disclosed. The method involves the use of a lubricating entry material placed on the top surface of a stack of printed circuit boards and a lubricating backup board placed beneath the bottom surface of the stack of printed circuit boards. The lubricating entry material has a core with skins attached on both sides by a lubricant/adhesive. Similarly, the backup board has a core with skins attached on both sides by a lubricant/adhesive. The skins are hard enough to support the top and bottom surfaces of the printed circuit boards and thereby reduce burring at the entry point and exit point of the through-hole. The lubricant/adhesive coats the drilling tool during the drilling operation to reduce friction and thereby reduce the temperature of the drilling tool.
Abstract:
A pre-preg substrate, having a low dielectric constant and containing a substantially uniformly distributed hollow-glass-microsphere filler, and method for making the same. The pre-preg substrate is treated with impregnation and lamination techniques to form a laminate with a low dielectric constant, and good mechanical and electrical properties, suitable as a base material for surface mounted devices in high performance circuits. Improved pre-pregs for making high performance circuit boards and for making surface mounted integrated circuits. Improved high performance circuit boards for making surface mounted integrated circuits.
Abstract:
An electrical substrate material is presented comprising a thermosetting matrix of polybutadiene or polyisoprene and a co-curable second resin distinct from the first resin. A peroxide cure initiator and/or crosslinking agent may optionally be added. The presence of a very high surface area particulate filler, preferably fumed silica, is also preferred, in that its presence results in a prepreg which has very little tackiness and can therefore be easily handled by operators. This low tackiness feature allows for the use of conventional automated layup processing, including foil cladding, using one or more known roll laminators. While the prepreg of this invention is tack-free enough to be handled relatively easily by hand, it is also tacky enough to be tacked to itself using a roll laminator (e.g., nip roller) at room temperature. The composition of this invention is particularly well suited for making electrical circuit substrates for microwave and digital circuits, typically in the form of the thermosetting composition being laminated onto one or both opposed surfaces to a metal conductive foil such as copper.
Abstract:
A method of preparing an adhesive composite is provided where a fluoropolymer having nodes and interconnected fibrils with a void volume formed from the node and interconnected fibril structure is at least partially filled with a paste formed from a thermoset or thermoplastic adhesive and a particulate vapor phase formed inorganic filler having uniform surface curvature, sufficient adhesive and filler are present to provide a composite having between about 5 to about 40 volume percent polymeric substrate, 10-95 volume percent adhesive and filler imbibed within the voids of said substrate and 5 to 85 volume percent inorganic filler is contained within the composite. In the composite, the ratio of mean flow pore size to largest particle size is at least above 0.7; or the ratio of mean flow pore size to average particle size is greater than 1.5; or the ratio of minimum pore size to average particle size is at least above 0.8; or the ratio of minimum pore size to largest particle size is at least above 0.4.
Abstract:
A substrate for a laminate which comprises a nonwoven fabric which is composed mainly of a liquid crystal polyester fiber, and which is subjected to (1) an entangling treatment, (2) a heating treatment to impart adhesivity to a thermosetting resin, and (3) a surface-modifying treatment, and a laminate containing at least one prepreg prepared by impregnating the substrate with a thermosetting resin and drying are disclosed. The substrate of the present invention has low dielectric constant, is light, exhibits low hygroscopicity, and has good properties to be impregnated with the thermosetting resin and good adhesiveness to the thermosetting resin.
Abstract:
An electrical substrate material is presented which comprises a thermosetting matrix which includes a polybutadiene or polyisoprene resin and an unsaturated butadiene or isoprene containing polymer in an amount of 25 to 50 vol. %; a woven glass fabric in an amount of 10 to 40 vol. %; a particulate, preferably ceramic filler in an amount of from 5 to 60 vol. %; a flame retardant and a peroxide cure initiator. A preferred composition has 18% woven glass, 41% particulate filler and 30% thermosetting matrix. The foregoing component ratios and particularly the relatively high range of particulate filler is an important feature of this invention in that this filled composite material leads to a prepreg which has very little tackiness and can therefore be easily handled by operators. This low tackiness feature allows for the use of conventional automated layup processing, including foil cladding, using one or more known roll laminators. While the prepreg of this invention is tack-free enough to be handled relatively easily by hand, it is also tacky enough to be tacked to itself using a roll laminator (e.g., nip roller) at room temperature. In addition, another important feature of this invention is the low amount of glass fabric filler relative to the higher range of particulate filler which leads to improved (lower) CTE in the Z axis or thickness direction, improved electrical performance (e.g., dissipation factor), lower cost and the ability to tailor dielectric constant through appropriate selection of particulate fillers.
Abstract:
Dimensionally stable resin impregnated laminates for printed wiring board applications are reinforced with from 43 to 57 weight percent of nonwoven aramid sheet having a coefficient of thermal expansion of less than 10 ppm per .degree. C, a basis weight of from 0.8 to 4.0 oz/yd.sup.2, a density of from 0.5 to 1.0 g/cc and a Gurley Hill Porosity of less than 10 sec.
Abstract:
A method for manufacturing a multilayer laminate provides in metal plates each forming a substrate apertures at positions where through holes are to be formed, fills the apertures with a synthetic resin including a first filler, and prepares prepregs to be disposed on both sides of each substrate by impregnating nonwoven fabric with a thermosetting synthetic resin containing a second filler. The metal plates forming the substrates are thereby allowed to be thicker for realizing larger capacity power supply with an improvement also in heat dissipation characteristics.
Abstract:
A flexible sheet which comprises a non-woven fabric made predominantly from a poly(aromatic amide) component which is impregnated with a heat- and/or light-curable resin, wherein the non-woven fabric satisfies the following conditions:5 g/m.sup.2