Abstract:
A layered inductor is manufactured by layering “silver-based conductive layers” and “ferrite-based magnetic layers” and simultaneously firing these layers. The conductive layers are via-connected to form a helical coil. A shape of a cross sectional surface of the conductive layer, cut by a plane perpendicular to a longitudinal direction of each of the conductive layers is a substantial trapezoid shape, having an upper base and a lower base. A base angle θ of the trapezoid shape at both ends of the lower base is equal to or greater than 50° and is smaller than or equal to 80°.
Abstract:
A method for manufacturing a backlight unit and a backlight apparatus are provided. The backlight unit includes a printed circuit board (“PCB”) having a plurality of inserting holes, a plurality of light-emitting diode (“LED”) package having a heat sink and inserted into the inserting hole and exposing the heat sink at a side of the PCB and a bottom chassis combining to the PCB. The heat sink of LED package is adhering to the bottom chassis. According to the present invention, the heat dissipation improves since the heat sink makes direct contact to the bottom chassis.
Abstract:
There is provided an electrode structure to be electrically connected to a connection conductor by being bonded thereto with an anisotropic conductive adhesive mainly composed of a thermosetting resin, the electrode structure including an electrode for connection using an adhesive, the electrode being arranged on a base material, and an organic film serving as an oxidation preventing film configured to cover a surface of the electrode for connection using an adhesive, in which the organic film has a higher decomposition temperature than the maximum temperature of heat treatment to be performed. A wiring body and a connecting structure using an adhesive are also provided.
Abstract:
A circuit board includes a substrate, a circuit pattern and a through electrode. The circuit pattern is disposed on one side of the substrate in a thickness direction thereof. The through electrode is filled in a through-hole formed in the substrate with one end connected to the circuit pattern. The circuit pattern and the through electrode each have an area containing a noble metal component (e.g., Au component) and are connected to each other therethrough.
Abstract:
A flip chip package may include a semiconductor chip, a package substrate, a conductive magnetic bump and an anisotropic conductive member. The semiconductor chip may have a first pad. The package substrate may have a second pad confronting the first pad. The conductive magnetic bump may be interposed between the semiconductor chip and the package substrate to generate a magnetic force. The anisotropic conductive member may be arranged between the semiconductor chip and the package substrate. The anisotropic conductive member may have conductive magnetic particles induced toward the conductive magnetic bump by the magnetic force to electrically connect the first pad with the second pad. A predetermined number of the conductive magnetic particles may be positioned between the conductive magnetic bump and the pad, so that an electrical connection reliability between the pads may be increased.
Abstract:
An exemplary light emitting diode (LED) assembly includes a cover, a substrate, a LED unit, a first electrode terminal, and a second electrode terminal. The substrate includes a first surface and a second surface on an opposite side of the substrate thereto. The substrate and the cover cooperatively define a cavity. The LED unit is received in the cavity. The first and the second electrode terminals extend from the second surface. The first electrode terminal is electrically connected to one of a positive lead and a negative lead of the LED unit and the second electrode terminal is electrically connected to the other. The second electrode terminal includes a first electrode portion and a second electrode portion symmetrically arranged at opposite sides of the first electrode terminal. The first and the second electrode portions are at least partially symmetrical with respect to the first electrode terminal.
Abstract:
A circuit line forming device, including an inkjet head to eject a conductive ink onto one side of a substrate, the conductive ink containing nanoparticles including a ferromagnetic core and a conductive layer surrounding the ferromagnetic core; and a magnetic field generator part, positioned on the other side of the substrate in correspondence with the inkjet head, wherein the magnetic field generator part applies a magnetic field on the conductive ink, when the conductive ink is ejected to form circuit lines.
Abstract:
A nanoparticle for conductive ink including a ferromagnetic core and a conductive layer surrounding the ferromagnetic core. The ferromagnetic core is 5 to 40 parts by weight, per 100 parts by weight of the nanoparticles. The conductive ink provides electrical reliability by allowing a uniform distribution of nanoparticles in ejected ink and prevents the coffee stain phenomenon and migration.
Abstract:
An exemplary light emitting diode (LED) assembly includes a cover, a substrate, a LED unit, a first electrode terminal, and a second electrode terminal. The substrate includes a first surface and a second surface on an opposite side of the substrate thereto. The substrate and the cover cooperatively define a cavity. The LED unit is received in the cavity. The first and the second electrode terminals extend from the second surface. The first electrode terminal is electrically connected to one of a positive lead and a negative lead of the LED unit and the second electrode terminal is electrically connected to the other. The second electrode terminal includes a first electrode portion and a second electrode portion symmetrically arranged at opposite sides of the first electrode terminal. The first and the second electrode portions are at least partially symmetrical with respect to the first electrode terminal.
Abstract:
An exemplary light emitting diode (LED) assembly includes a cover, a substrate, a LED unit, a first electrode terminal, and a second electrode terminal. The substrate includes a first surface and a second surface on an opposite side of the substrate thereto. The substrate and the cover cooperatively define a cavity. The LED unit is received in the cavity. The first and the second electrode terminals extend from the second surface. The first electrode terminal is electrically connected to one of a positive lead and a negative lead of the LED unit and the second electrode terminal is electrically connected to the other. The second electrode terminal includes a first electrode portion and a second electrode portion symmetrically arranged at opposite sides of the first electrode terminal. The first and the second electrode portions are at least partially symmetrical with respect to the first electrode terminal.