Abstract:
A flexible circuit board having a flexible graphite substrate is provided. The flexible circuit board includes a dielectric layer formed on the surface of the flexible graphite substrate and an electrically conductive layer formed on the surface of the dielectric. Electronic components are mounted to the flexible circuit board to form a circuit arrangement. A thermally conductive conduit can be disposed in thermal and physical contact with a surface of the electronic component and the surface of the flexible graphite substrate to. The high in-plane thermal conductivity graphite substrate provides enhanced heat transfer capability to effectively move of heat away from the electronic components for improved cooling of the heat generating electronic component and surrounding devices.
Abstract:
An electrical device for soldering to a circuit board with a solder includes a capacitor, a lead frame including a solder dam, and a solder joint electrically coupling the capacitor to the lead frame. The solder dam includes one of a physical barrier to flow or an area of reduced wettability to the solder. The solder dam is between the solder joint and the circuit board. The solder dam is on one or both of a lead portion and main portion of the lead frame. In one embodiment, the first solder dam extends substantially the full width of the first lead portion. The solder dam may be a barrier and/or include a metal oxide. A method of manufacturing the device includes soldering a lead frame to a capacitor with a solder and modifying a surface on the lead frame to include a physical barrier and/or an area of reduced wettability.
Abstract:
A chip component includes external terminals on a mounting surface thereof at positions that are rotationally symmetric to each other by 180 degrees with respect to a center of the mounting surface. A substrate includes first and second mounting terminals on the mounting surface of the substrate at first diagonal positions of a square indicated by a two dot chain line, and third and fourth mounting terminals on the surface of the substrate at second diagonal positions of the square. The first and fourth mounting terminals are connected by a first terminal connecting portion, and the second and third mounting terminals are connected by a second terminal connecting portion. The chip component is configured to be mounted in any of four directions obtained by rotating the chip component every 90 degrees and achieves the same electrical characteristics.
Abstract:
Embodiments relate generally to wearable electrical and electronic hardware, computer software, wired and wireless network communications, and to wearable/mobile computing devices. More specifically, various embodiments are directed to, for example, aligning a flexible substrate and/or components thereof during fabrication to enhance reliability. In one example, a method includes forming a framework that includes, for example, a portion (e.g., an anchor portion) configured to couple to a flexible substrate, the portion having a neutral axis. Also, the method may include forming a flexible substrate that includes a supported flex region including conductors and one or more rigid regions configured to receive one or more components. A rigid region might include an encapsulated rigid region. The method further may also include aligning the encapsulated rigid region at an angle to the neutral axis, and molding over the encapsulated rigid region.
Abstract:
A package 10 includes a housing 1 in which an electronic component 5 is mounted in a recess 1a having an opening on an upper surface and a screwing section 31 that is fixed on a side face of the housing 1 and extends in a lateral direction. The screwing section 31 includes a thin section 34 which is located on a distal end and is provided with a through hole 36 through which a screw is inserted, a thick section 35 which is located between the thin section 34 and the side face of the housing 1 and has a thickness less than that of the side face of the housing 1 and thicker than that of the thin section 34, and a screw fastening hole 37 which extends in the vertical direction in the thick section 35. Even if the housing 1 has warpage when the package 10 is fixed on the external substrate, heat dissipation from the package to the external substrate can be improved.
Abstract:
An overcurrent cutoff device includes a heat generating unit located in series with a path leading from a battery B for a vehicle to a motor via a wire, and a heat sensing unit with characteristics varying with the temperature supplied from the heat generating unit. The overcurrent cutoff device cuts off overcurrent by activating a switching element, based on a signal in accordance with the temperature obtained from the heat sensing unit. The overcurrent cutoff device includes an overcurrent detecting element in which the heat generating unit and the heat sensing unit are integrally covered with a molded resin section.
Abstract:
An overcurrent cutoff device includes a heat generating unit located in series with a path leading from a battery B for a vehicle to a motor via a wire, and a heat sensing unit with characteristics varying with the temperature supplied from the heat generating unit. The overcurrent cutoff device cuts off overcurrent by activating a switching element, based on a signal in accordance with the temperature obtained from the heat sensing unit. The overcurrent cutoff device includes an overcurrent detecting element in which the heat generating unit and the heat sensing unit are integrally covered with a molded resin section.
Abstract:
A method of constructing an RFID unit can include using a protective layer to hold an integrated circuit chip module to a substrate layer with an antenna unit while a conductive adhesive has not yet fully set.
Abstract:
The present invention provides an electronic assembly 400 and a machine 800 for its manufacture. The assembly 400 has no solder. Components 406, or component packages 402, with I/O leads 412 sit on a planar substrate. The machine 800 encapsulates the components 406 or component packages, with electrically insulating material with vias 420 extending through the substrate to the components' leads 412. Then the machine 800 plates the components' leads and forms traces. Next, the machine 800 covers the plated material with electrically insulating material. Additional vias may extend through the material covering the plated material and in turn be plated and covered. The machine 800 repeats the formation of vias, plating, and coverings of the assembly as desired.
Abstract:
A coil component comprises a core element having a mounting portion, a coil conductor placed on the core element, and at least two terminal electrodes which are placed in the mounting portion. The mounting portion has at least two terminal placement areas for placing the terminal electrodes respectively. A hollow portion opening to the mounting side face of the mounting portion is formed in an area between the at least two terminal placement areas in the mounting portion. When mounting the coil component on a circuit board, conductive paste is intervened between an area from the terminal electrodes placed in the mounting portion of the core element to the base exposed area of the mounting portion, and the electrode patterns on the circuit board.