Abstract:
Diamond microtip field emitters are used in diode and triode vacuum microelectronic devices, sensors and displays. Diamond diode and triode devices having integral anode and grid structures can be fabricated. Ultra-sharp tips are formed on the emitters in a fabrication process in which diamond is deposited into mold cavities in a two-step deposition sequence. During deposition of the diamond, the carbon graphite content is carefully controlled to enhance emission performance. The tips or the emitters are treated by post-fabrication processes to further enhance performance.
Abstract:
A carbon film having an area of insulating material surrounded by an area of conducing material, and an area of material between the area of insulating material and the area of conducting material having a graded dielectric constant which varies from high to low from the area of insulating material to the area of conducting material.
Abstract:
An apparatus for emitting electrons is provided. The apparatus includes a subsurface emitter having a sharp tip, a substrate including a base, and electrical continuity between the tip, the base, and an external circuit. This emitter structure may be used to form individual emitters or arrays of emitters. Also provided is a method of making electron emitters which is comprised of implanting energetic ions into a diamond lattice to form cones or other continuous regions of damaged diamond. These regions are more electrically conducting than the surrounding diamond lattice, and have locally sharp tips at or near the point of entry of the ion into the diamond. The tips may then also be additionally coated with a layer of a wide band-gap semiconductor. An electrically conducting material may also be placed in proximity to the tips to generate an electric field sufficient to extract electrons from the conducting tips into either the region above the surface, or into the wide band-gap semiconductor layer in contact with the tips. Electrical contact is made to the electrically conducting damage tracks and the electrical circuit may be completed with an electrically conducting material on the surface of the wide band-gap semiconductor or diamond, or in the ambient above the surface of the emitter. The surface of the wideband gap semiconductor or diamond may be chemically modified to enhance the emission of electrons from the surface.
Abstract:
A radio frequency magnetron device for generating radio frequency power includes a cathode at least partially formed from a diamond material. An anode is disposed concentrically around the cathode. An electron field is provided radially between the anode and the cathode. First and second oppositely charged pole pieces are operatively connected to the cathode for producing a magnetic field in a direction perpendicular to the electric field. A filament is provided within the electron tube which when heated produces primary electrons. Alternatively, a voltage is applied to the anode which causes primary electrons to emit from the diamond coated cathode. A portion of the primary electrons travel in a circular path and induce radio frequency power. Another portion of the primary electrons spiral back and collide with the cathode causing the emission of secondary electrons. The secondary electron emission sustains operation of the magnetron device once the device has been started.
Abstract:
The field emission type cathode (K) is made as the multilayered structure (33) in which the conductive platelike corpuscles 30 are piled, whereby an edge portion of end surface of a field emission type cathode K for emitting electrons is formed sharply and easily.
Abstract:
The field emission type cathode. (K) is made as the multilayered structure (33) in which the conductive platelike corpuscles 30 are piled, whereby an edge portion of end surface of a field emission type cathode K for emitting electrons is formed sharply and easily.
Abstract:
A field emission cathode for use in flat panel displays is described including a layer of conductive material and a layer of amorphic diamond film, functioning as a low effective work-function material, deposited over the conductive material to form emission sites. The emission sites each contain at least two sub-regions having differing electron affinities. Use of the cathode to form a computer screen is also described along with the use of the cathode to form a fluorescent light source.
Abstract:
A method for fabricating a nano-sized diamond whisker includes the steps of depositing a diamond film on a substrate, forming a nano-sized mask pattern on the deposited diamond film, and etching the diamond film by using the nano-sized pattern as an etching mask. The nano-sized diamond whisker can be used as a new field emission cold cathode device, thereby advancing a practical use of a field emission device having high performance, and can also be applied to various fields such as a new composite material and a mechanical device.
Abstract:
A carbon film having an area of insulating material surrounded by an area of conducing material, and an area of material between the area of insulating material and the area of conducting material having a graded dielectric constant which varies from high to low from the area of insulating material to the area of conducting material.
Abstract:
An electron emission element of the present invention includes a substrate, a cathode formed on the substrate, an anode opposed to the cathode, an electron emission member disposed on the cathode, and a control electrode disposed between the cathode and the anode. During operation, the electric field intensity immediately above the electron emission member is lower than that between the control electrode and the anode. Alternatively, the spatial average of an electric field intensity between the electron emission member and the control electrode is smaller than that between the control electrode and the anode.