Abstract:
An LED lighting assembly including a plurality of individual LEDs mounted on a common, bendable heat sinking member designed to remove heat from the LEDs during operation and also to be formed (bent) to provide the desired light direction and intensity. Several such assemblies may be used within an LED lamp, as also provided herein. The lamp is ideal for use within medical and dental environments to assure optimal light onto a patient located at a specified distance from the lamp.
Abstract:
A method of forming a capacitive substrate in which at least one capacitive dielectric layer of material is screen or ink jet printed onto a conductor and the substrate is thereafter processed further, including the addition of thru-holes to couple selected elements within the substrate to form at least two capacitors as internal elements of the substrate. Photoimageable material is used to facilitate positioning of the capacitive dielectric being printed. The capacitive substrate may be incorporated within a larger circuitized substrate, e.g., to form an electrical assembly. A method of making an information handling system including such substrates is also provided.
Abstract:
An interposer including at least two dielectric layers bonded to each other, sandwiching a plurality of conductors there-between. The conductors each electrically couple a respective pair of opposed electrical contacts formed within and protruding from openings with the dielectric layers.
Abstract:
An optical-electronic package for an electronic device provides electrical connections to the electronic device and optical fiber connections to the electronic device. The package includes a high thermal conductivity base which has a pedestal to support and provide heat transfer connection to the electronic device. A seal band is formed on the base and a casing is bonded to the seal band. The casing has side feedthroughs for the electrical connections from the electronic device, and the casing has top feedthroughs or grooves for the optical fiber connections from the electronic device. A lid is hermetically sealed to the top of the casing. The lid has retractable means for forming a bend in the optical fibers to provide strain relief when the lid is placed on the casing. The retractable means for forming a bend in the optical fibers is retractable once the lid is sealed on the casing.
Abstract:
A method of making a circuitized substrate (e.g., PCB) including at least one and possibly several internal optical pathways as part thereof such that the resulting substrate will be capable of transmitting and/or receiving both electrical and optical signals. The method involves forming at least one opening between a side of the optical core and an adjacent upstanding member such that the opening is defined by at least one angular sidewall. Light passing through the optical core material (or into the core from above) is reflected off this angular sidewall. The medium (e.g., air) within the opening thus also serves as a reflecting medium due to its own reflective index in comparison to that of the adjacent optical core material. The method utilizes many processes used in conventional PCB manufacturing, thereby keeping costs to a minimum. The formed substrate is capable of being both optically and electrically coupled to one or more other substrates possessing similar capabilities, thereby forming an electro-optical assembly of such substrates.
Abstract:
A circuitized substrate (e.g., PCB) including an internal optical pathway as part thereof such that the substrate is capable of transmitting and/or receiving both electrical and optical signals. The substrate includes an angular reflector on one of the cladding layers such that optical signals passing through the optical core will impinge on the angled reflecting surfaces of the angular reflector and be reflected up through an opening (including one with optically transparent material therein), e.g., to a second circuitized substrate also having at least one internal optical pathway as part thereof, to thus interconnect the two substrates optically. A method of making the substrate is also provided.
Abstract:
A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
Abstract:
An arrangement and method for the insertion the leading end of a length of a metallic element into a through hole which is formed in a substrate, and for heat deforming the inserted leading portion of the metallic element into a predetermined configuration prior to severing therefrom the remaining length of the metallic element.
Abstract:
A method and apparatus for locating a short between two nets in an electrical wire network of a microelectronic structure (e.g., chip, chip carrier, circuit card, etc.). A first net and a second net of the electrical wire are electrically shorted at an unknown point PS on the first net. Points PA and PB on the first net such are selected such that PS is located on a path between PA and PB along the first net. A constant current pulse source is electrically connected between PA and PB and is activated. Voltage drops VAB (from PA to PB) and VAC (from PA to a point PC on the second net) are measured. A length LAS of the path from PA to PS is calculated as a function of VAC/VAB. Computer graphics may be used to graphically display the location of the short within the microelectronic structure.
Abstract:
The present invention relates generally to fiber optical arrays, and particularly, but not by way of limitation, to 3-dimentional array fiber optical couplers. More particularly, the present invention provides means of coupling semiconductor laser light sources to fiber-optic transmission devices.