Abstract:
본 발명은 탄소나노튜브 전극의 제조방법 및 이에 따라 제조되는 탄소나노튜브 전극에 관한 것으로, 상세하게는 절연성 재질의 기판 상부로 바닥전극을 형성하는 단계(단계 1); 상기 단계 1의 바닥전극 상부로 촉매층을 형성하는 단계(단계 2); 및 상기 단계 2에서 촉매층이 형성된 기판에 탄소 나노튜브를 성장시키는 단계(단계 3)를 포함하는 탄소 나노튜브 전극의 제조방법 및 이에 따라 제조되는 탄소 나노튜브 전극을 제공한다. 본 발명의 탄소나노튜브 전극의 제조방법 및 이에 따라 제조되는 탄소나노튜브 전극은 전극을 광기능기가 달린 폴리머 레진을 열화시켜 제조함으로써 고가의 금속 및 증착과정이 필요하지 않은 효과가 있으며, 탄소 나노튜브를 성장시켰을 때 탄소 나노튜브와 우수한 접촉저항 특성을 갖는 효과가 있다. 또한 본 발명의 탄소나노튜브 전극은 우수한 전기화학적 특성 및 우수한 접촉저항 특성을 가지며 이에 따라 고감도 전기화학센서, 연료전지 및 전자빔원등에 적용 가능한 효과가 있다.
Abstract:
본발명은 CEA에특이적으로결합하는단일가닥 DNA를포함하는압타머에관한것이다. 본발명에서 CEA에특이적으로결합하는단일가닥 DNA는서열번호 1 내지서열번호 3의단일가닥 DNA 가이루는 3차원구조가 CEA와의특이적인결합을달성하게하는것으로생각된다. 본발명의 DNA 압타머를이용하는바이오센서는 DNA 서열로이루어져단백질서열로이루어진종래의진단시약에비해활성을장기간유지할수 있고, 열등의환경조건에도변하지않아안정적으로장기간보관할수 있다.
Abstract:
PURPOSE: A microorganism detection sensor is provided to induce arrangement of target microorganism to the surface of carbon nanotube and to improve sensitivity. CONSTITUTION: A microorganism detection sensor comprises: a gate formed on a silicon substrate(1); a metal source electrode(3) at one side of the gate; a metal drain electrode(3') at the opposite side of the gate; a carbon nanotube transistor array(10); a recognizing material which specifically binds to microorganism on the surface of the carbon nanotube; and microfluidic channel(5). A method for manufacturing microorganism detection sensor comprises: a step of forming a carbon nanotube transistor array comprising the metal source electrode, metal drain electrode, and gate; a step of fixing the fixing material on the surface of the carbon nanotube; a step of attaching the recognizing material which specifically binds to the microorganism; and a step of conjugating the microfluidic channel to the carbon nanotube transistor array.
Abstract:
본 발명은 니켈 결합 양자점을 이용한 히스티딘 표지 단백질의 검출방법에 관한 것으로서, 더욱 상세하게는 카르복실기를 가지는 양자점을 제조하고, 이 표면에 니켈을 처리하여 세포 독성이 낮고 발광 효율이 좋은 양자점을 제조하여 양자점에 커플링 되어 있는 니켈이 특이 단백질에 표지된 히스티딘을 찾아 결합함으로써 단백질을 검출하는 방법에 관한 것이다. 또한, 이러한 결합은 원하는 특정 단백질을 세포 또는 생체에서 특이적 결합하여 단백질의 이동 경로뿐만 아니라 이미징을 관찰하는 데 용이하다. 니켈, 양자점, 히스티딘, 단백질, 검출방법
Abstract:
본 발명의 탄소나노튜브 트랜지스터 제조 방법은 소스 전극과 드레인 전극 사이에 탄소나노튜브 채널이 형성되어 있으며, 상기 탄소나노튜브 채널 일측에 게이트 전극이 형성되어 있는 탄소나노튜브 트랜지스터를 제조하는 방법으로서, a) 기판상에 상기 탄소나노튜브 채널을 형성하는 단계; b) 상기 탄소나노튜브 채널의 양단에 상기 소스 전극 및 드레인 전극을 전기적으로 각각 연결하는 단계; 및 c) 상기 소스 전극 및 드레인 전극 사이에 스트레스 전압을 인가하여, 상기 탄소나노튜브 채널 내 금속성을 제거하는 단계;를 포함한다. 본 발명의 탄소나노튜브 트랜지스터 제조 방법에 의하면, 트랜지스터 소자 내에서 채널로 이용되며, 금속성과 반도체성이 혼재되어 있는 탄소나노튜브에서 금속성 부분을 선택적으로 제거할 수 있다. 탄소나노튜브
Abstract:
본 발명의 탄소 나노튜브 반도체 소자 제조 방법은 기판상에 탄소 나노튜브가 형성될 위치에 탄소 나노튜브 성장을 촉진시키는 촉매를 도입하는 단계; 상기 촉매 처리된 상기 기판의 상기 위치에 상기 탄소 나노튜브를 형성하는 단계; 및 상기 탄소 나노튜브에 표면 개질제를 처리하여 상기 탄소 나노튜브에서 금속성을 제거하는 단계;를 포함 한다. 본 발명의 탄소 나노튜브 반도체 소자의 제조 방법을 이용하면, 성장되어 형성된 탄소 나노튜브에서 금속성을 제거하여 반도체성만을 가지게 함으로써 탄소 나노튜브를 반도체 소자의 채널로 적합하게 이용할 수 있다. 탄소 나노 튜브
Abstract:
본 발명은 금속 소스전극, 금속 드레인전극, 게이트 및 탄소나노튜브로 이루어진 채널영역을 포함하는 탄소나노튜브 트랜지스터 어레이, 상기 탄소나노튜브 트랜지스터 어레이의 채널영역을 구성하고 있는 탄소나노튜브의 표면에 흡착 개질되어 미생물과 특이적으로 결합하는 압타머(aptamer), 및 상기 압타머를 상기 탄소나노튜브에 고정시키는 고정물질로 이루어진 것을 특징으로 하는 탄소나노튜브 트랜지스터 어레이를 이용한 미생물 검출센서에 관한 것이다. 이를 통해 시료의 대장균 유무 및 농도를 20분내에 간단하게 추정할 수 있다. 이 과정은 복잡한 실험장비나 시설 또는 배양에 필요한 조건등이 전혀 필요하지 않으므로 수질, 식품, 환경등의 응용에서 간단하게 미생물을 찾아내는 수단으로 이용될 수 있다. 미생물, 탄소 나노튜브, 나노 트랜지스터
Abstract:
A nano-wire semiconductor device, a semiconductor memory device including the same, and a manufacturing method thereof are provided to capture or remove electric charges by forming a silicide island at a contact part between a nano-wire and source/drain electrodes. A nano-wire(110) is arranged on an upper surface of an element forming substrate(200). Source and drain electrodes(240a,240b) are arranged on an upper surface of the nano-wire. The source and drain electrodes are separated from each other. A silicide island is formed at a contact part between the source and drain electrodes and the nano-wire. A surface of the nano-wire between the source and drain electrodes is exposed. A channel layer is formed in the nano-wire by using voltage swing between the source and drain electrodes.
Abstract:
본 발명은 멀티스케일 시뮬레이션 결합을 위한 시스템 및 방법에 관한 것으로서, 더욱 상세하게는 양자모델링과 원자모델링의 서로 다른 스케일을 다루는 시뮬레이션 방법을 결합하는 멀티스케일에 관한 것이다. 이를 위해, 본 발명은 QM 및 MM 프로그램의 선택 단계와; 계산하고자 하는 시스템의 원자의 위치 및 QM을 적용하고자 하는 크러스터 1의 원자 위치를 입력시키는 단계와; QM이 적용되는 크러스터 1의 원자 위치가 주어질 때, QM 영역과 MM 영역을 이어주는 링크 원자 위치를 생성하여 계산에 필요한 크러스터 2의 원자위치를 생성하는 단계와; 생성된 시스템의 원자구조와 상기 크러스터 2에 대한 QM과 MM 프로그램의 입력 파일을 생성하는 단계와; 생성된 QM과 MM 프로그램의 입력 파일을 독자적으로 구동시켜 원자 위치에 따른 에너지 값과 힘 값을 계산하는 단계와; 계산된 에너지 값에서 Subtractive scheme에 의한 전체 에너지를 계산하고 전체 에너지를 최소화하는 원자구조를 찾는 원자구조 최적화 단계; 로 이루어지는 것을 특징으로 하는 멀티스케일 시뮬레이션 결합을 위한 시스템 및 방법을 제공한다. 멀티스케일, QM, MM, 크러스터, 시뮬레이션, 결합 시스템 및 방법, 원자모델링, 양자모델링
Abstract:
Carbon nanotube transistor biosensors using aptamers as molecular recognition elements and a method for sensing a target material in blood by using the same biosensors are provided to inexpensively detect the target protein by measuring electrical change of the carbon nanotube when the aptamers on the carbon nanotube is exposed to the target protein, and enhance detection sensitivity and selectivity by using carbon nanotube and DNA aptamers. The carbon nanotube transistor biosensor comprises (i) a carbon nanotube transistor containing source, drain and gate, where the channel region is composed of carbon nanotube, (ii) DNA aptamers bound to the surface of the carbon nanotube, and (iii) a fixing material for fixing the aptamers to the carbon nanotube, wherein the channel is composed of single wall or multiple wall nanotubes, and metal oxide nanowire and semiconductor nanowire showing transistor properties; the nanowire has diameter of 50 nm or less and uses the aptamers as recognition materials; the single wall nanotube has diameter of 2 nm and the multiple wall nanotube has diameter of 50 nm or less; and the aptamer-fixing material is pyrene or other molecules having affinity to the carbon nanotube. The method for sensing a target material in blood comprises the steps of: manufacturing the carbon nanotube transistor containing the carbon nanotube with aptamers; measuring the electrical conductivity change of the carbon nanotube when the aptamers are exposed to the target material; and detecting the target material based on the data on the electrical conductivity change, wherein the target material is protein, peptide, amino acid, nucleotide, drug, vitamin or organic/inorganic compound.