Abstract:
A semiconductor device is described that includes an integrated circuit (500) coupled to a first semiconductor substrate (100) with a first set of passive devices (e.g., inductors) (102) on the first substrate. A second semiconductor substrate (200) with a second set of passive devices (e.g., capacitors) (202) may be coupled to the first substrate. Interconnects (104) in the substrates may allow interconnection between the substrates and the integrated circuit. The passive devices may be used to provide voltage regulation for the integrated circuit. The substrates and integrated circuit may be coupled using metallization (106,502).
Abstract:
Sensor packages and manners of formation are described. In an embodiment, a sensor package includes a supporting die characterized by a recess area and a support anchor protruding above the recess area. A sensor die is bonded to the support anchor such that an air gap exists between the sensor die and the recess area. The sensor die includes a sensor positioned directly above the air gap.
Abstract:
Semiconductor device modules having two or more integrated circuit dies mounted on opposing sides of a substrate. The integrated circuit dies are mounted by use of surface mount connections, such as flip chip connections implemented using conductive bumps. Systems may include one or more of the present semiconductor device modules, and in some cases may also include other modules, such as a system module.
Abstract:
Multi-die structures and methods of fabrication are described. In an embodiment, a multi-die structure includes a first die, a second die, and die-to-die routing connecting the first die to the second die. The die-to-die interconnection may be monolithically integrated as a chip-level die-to-die routing, or external package-level die-to-die routing.
Abstract:
Multiple chip module (MCM) structures are described. In an embodiment, a module includes a first and second components on the top side of a module substrate, a stiffener structure mounted on the top side of the module substrate, and a lid mounted on the stiffener structure and covering the first component and the second component. The stiffener is joined to the lid within a trench formed in a roof of the lid.
Abstract:
Stitched die packaging techniques and structures are described in which reconstituted chips are formed using wafer reconstitution and die-stitching techniques. In an embodiment, a chip includes a reconstituted chip-level back end of the line (BEOL) build-up structure (310) to connect a die set (110, 110) embedded in an inorganic gap fill material (130).
Abstract:
Stitched die packaging techniques and structures are described in which reconstituted chips are formed using wafer reconstitution and die-stitching techniques. In an embodiment, a chip includes a reconstituted chip-level back end of the line (BEOL) build-up structure to connect a die set embedded in an inorganic gap fill material.
Abstract:
Multiple component package structures are described in which an interposer chiplet is integrated to provide fine routing between components. In an embodiment, the interposer chiplet and a plurality of conductive vias are encapsulated in an encapsulation layer. A first plurality of terminals of the first and second components may be in electrical connection with the plurality of conductive pillars and a second plurality of terminals of first and second components may be in electrical connection with the interposer chiplet.
Abstract:
Packages and methods of formation are described. In an embodiment, a package includes a redistribution layer (RDL) (130) formed directly on a top die (110), and a bottom die (150) mounted on a back surface of the RDL.
Abstract:
Packages and methods of formation are described. In an embodiment, a system in package (SiP) includes first and second redistribution layers (RDLs), and a plurality of die attached to the front and back side of the first RDL. The first and second RDLs are coupled together with a plurality of conductive pillars extending from the back side of the first RDL to a front side of the second RDL.