Abstract:
A method of creating a layer of a target deposit-material, in a first target pattern, on a substrate surface. The substrate surface is placed in a vacuum and exposed to a first chemical vapor, having precursor molecules for a seed deposit-material, thereby forming a first substrate surface area that has adsorbed the precursor molecules. Then, a charged particle beam is applied to the first substrate surface area in a second target pattern, largely identical to the first target pattern thereby forming a seed layer in a third target pattern. The seed layer is exposed to a second chemical vapor, having target deposit-material precursor molecules, which are adsorbed onto the seed layer. Finally, a laser beam is applied to the seed layer and neighboring area, thereby forming a target deposit-material layer over and about the seed layer, where exposed to the laser beam.
Abstract:
A system for beam-induced deposition or etching, in which a charged particle or laser beam can be directed to a work piece within a single vacuum chamber, either normally incident or at an angle. Simultaneously with beam illumination of the work piece, a deposition or etch precursor gas is co-injected or premixed with a purification compound and (optionally) a carrier gas prior to injection into the process chamber. The beam decomposes the deposition precursor gas to deposit a film only in areas illuminated by the beam, or decomposes the etch precursor gas to etch a film only in areas illuminated by the beam. Undesired impurities such as carbon in the deposited film are removed during film growth by interaction with adsorbed species on the work piece surface that are generated by interaction of the beam with adsorbed molecules of the film purification compound. Alternatively, the film purification compound can be used to inhibit oxidation of the material etched by the etch precursor gas. By co-injecting or premixing the deposition or etch precursor gas and film purification compound prior to injection, the deposition or etch process may be optimized with respect to growth/etch rate and achievable material purity.
Abstract:
Improved method of and system for substrate micromachining is described. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.